

HC900 Hybrid Controller Installation and User Guide

Doc. No.: 51-52-25-107

Revision: 11

Date: 10/06

Notices and Trademarks

Copyright 2006 by Honeywell Revision 11 October 2006

Warranty/Remedy

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Contact your local sales office for warranty information. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace without charge those items it finds defective. The foregoing is Buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.

While we provide application assistance personally, through our literature and the Honeywell web site, it is up to the customer to determine the suitability of the product in the application.

Industrial Measurement and Control

Honeywell 1100 Virginia Drive Fort Washington, PA 19034

Honeywell is a U.S. registered trademark of Honeywell

Other brand or product names are trademarks of their respective owners.

10/06

About This Document

Abstract

This document provides descriptions and procedures for the installation, operation and maintenance of the HC900 Hybrid Controller hardware.

References

The following list identifies all documents that may be sources of reference for material discussed in this publication.

Document Title	ID#
HC900 Hybrid Controller Technical Overview Specification	51-52-03-31
HC900 Module Specification	51-52-03-41
HC900 Controlware Specification	51-52-03-42
Hybrid Control Designer Specification	51-52-03-43
HC900 Hybrid Controller Operator Interface User Guide	51-52-25-108
HC900 Hybrid Control Designer User Guide	51-52-25-110
HC900 Hybrid Control Utilities User Guide	51-52-25-126
HC900 Hybrid Controller Function Block Reference Guide	51-52-25-109
HC900 Hybrid Controller Communications User Guide	51-52-25-111
HC900 Controller Redundancy Overview & System Operation	51-52-25-133

Contacts

World Wide Web

The following lists Honeywell's World Wide Web sites that will be of interest to our customers.

Honeywell Organization	WWW Address (URL)
Corporate	http://www.honeywell.com
Industrial Measurement and Control	http://www.honeywell.com/imc
Technical tips	http://content.honeywell.com/ipc/faq

Telephone

Contact us by telephone at the numbers listed below.

	Organization	Phone Number
United States and Canada	Honeywell	1-800-423-9883 Tech. Support 1-800-525-7439 Service

Symbol Definitions

The following table lists those symbols that may be used in this document and on the product to denote certain conditions.

Symbol Definition

This **DANGER** symbol indicates an imminently hazardous situation, which, if not avoided, will result in death or serious injury.

A WARNING

This **WARNING** symbol indicates a potentially hazardous situation, which, if not avoided, **could result in death or serious injury**.

A CAUTION

This **CAUTION** symbol may be present on Control Product instrumentation and literature. If present on a product, the user must consult the appropriate part of the accompanying product literature for more information.

CAUTION

This **CAUTION** symbol indicates a potentially hazardous situation, which, if not avoided, **may result in property damage**.

WARNING

PERSONAL INJURY: Risk of electrical shock. This symbol warns the user of a potential shock hazard where HAZARDOUS LIVE voltages greater than 30 Vrms, 42.4 Vpeak, or 60 Vdc may be accessible. **Failure to comply with these instructions could result in death or serious injury.**

ATTENTION, Electrostatic Discharge (ESD) hazards. Observe precautions for handling electrostatic sensitive devices

CAUTION, HOT SURFACE: This symbol warns the user of potential hot surfaces which should be handled with appropriate caution.

Protective Earth (PE) terminal. Provided for connection of the protective earth (green or green/yellow) supply system conductor.

Functional earth terminal. Used for non-safety purposes such as noise immunity improvement. NOTE: This connection shall be bonded to protective earth at the source of supply in accordance with national and local electrical code requirements.

Earth Ground. Functional earth connection. NOTE: This connection shall be bonded to Protective earth at the source of supply in accordance with national and local electrical code requirements.

Chassis Ground. Identifies a connection to the chassis or frame of the equipment shall be bonded to Protective Earth at the source of supply in accordance with national and local electrical code requirements.

Contents

Introduction	1
Purpose	1
Model Selection Guide	2
Functional Description	6
Feature Summary	9
Components and Architecture	10
Overview	10
Components	10
Redundant components	13
Hardware Components	15
Ethernet Devices/Considerations	24
I/O Network	25
Ethernet Open Connectivity Network	26
Serial Ports (RS-232 and RS-485)	31
Pre-Installation Planning	36
Overview	36
AC Power Supply Selection for racks with I/O	37
DC Power Supply	38
Rack Orientation and Mounting	38
Remote Termination Panels	40
Environment	40
Heat Rise De-rating	41
Cable/Wiring Distance Planning	42
Electrical Considerations	44
System Monitor Function Blocks	50
Rack Installation	51
Overview	51
Mount Racks	54
Assemble Controller Rack	56
Assemble I/O Expansion Racks	61
I/O Module Installation and Wiring	
Overview	
Module Placement in Racks	63

Remote Termination Panel (RTP)	65
Terminal Block-to-Field (Signal) Wiring	65
Removal and Insertion Under Power (RIUP)	68
I/O Module Installation Procedures	69
I/O Terminal Block Wiring Diagrams	76
Communications Installation	101
Overview	101
Wiring and cabling	101
Connecting the Operator Interface to the Controller	105
Connecting the HC900 Controller to a PC with the Hybrid Control Designer	Software106
Connecting the HC900 Controller to Modbus device(s)	125
Operating Characteristics	126
Introduction	126
Overview	126
Power Down / Power Up	126
Controller Modes	129
File Download/Upload Functions	133
Redundant Operating Characteristics	135
Overview	135
Start-Up	135
Modes of operation (Figure 78)	135
Steady State Operations	136
Failover	138
File Download/Upload Functions	139
Diagnostics and Troubleshooting	141
Overview	141
External Indications of Diagnostic Information	141
Controller CPU indicators	142
Scanner indicators	150
I/O Module Indicators	154
Ethernet Switch indicators	157
Analog Calibration	158
Overview	158
Removal and Replacement Procedures	162
Overview	162
Safety Considerations - PLAN AHEAD!	162

Specifications	172
General Specifications	172
HC900 Analog Input Ranges vs. UMC800 Analog Input ranges	178
System Sizing and Availability Summary	181
Fiber Optics Recommendations	182
Appendix - Installation of Remote Termination Panels (RTPs)	185
Overview	185
Analog Input	186
Relay Output	192
Digital Input/Digital Output/Analog Output	196
Latch/Unlatch RTP to rail	217
Indov	

Index

Sales and Service

Declaration of CE Conformity

Tables

Table 1 – Descriptions of Major Components (Figure 4)	
Table 2 – Descriptions of Major Redundancy Components (Figure 5)	
Table 3 – Serial port DIP switch settings	32
Table 4 – Simultaneous serial port configurations	
Table 5 – Power Applied, by Module Type	41
Table 6 – Guidelines for Grouping Wires	47
Table 7 – Installation Tools	51
Table 8 – Site and Equipment Preparation	52
Table 9 – Mount Racks	54
Table 10 – Assemble C30/C50/C70 Controller Rack	56
Table 11 – Assemble C70R Controller Rack	59
Table 12 – Assemble I/O Expansion Racks	61
Table 13 – Minimum Recommended Wire Sizes	
Table 14 – RIUP: Potential Hazards and Recommended Actions	68
Table 15 – Connect Input/Output Wiring	
Table 16 – Typical Thermocouple resistance in Ohms per Double Foot @ 68 degrees F	
Table 17 – Connect Communications Wiring and Cabling	
Table 18 – Links to Controller Communication Ports	
Table 19 – Parts needed to make RS-485 Cable	
Table 20 – Null Modem Cable Connections.	
Table 21 – Redundant Network connections in Figure 71	119
Table 22 – Redundant network connections	
Table 23 – Controller Operating Modes	
Table 24 – Mode Switch Functions	
Table 25 – Controller Behavior in Mode Transition	
Table 26 – Configuration file downloading	
Table 27 – LED Indications on Controller CPUs	143
Table 28 – Controller Status LED Diagnostics	144
Table 29 – LED Indications on Scanner Module	
Table 30 – Scanner LED Diagnostics	
Table 31 – LED Indications on I/O Module	
Table 32 – I/O Module LED Diagnostics	
Table 33 – Bad I/O Channel Diagnostics	
Table 34 – LED Indications on Ethernet Switch	
Table 35 – Power Supply Replacement (all except C70R)	
Table 36 – Controller Module Replacement	165
Table 37 – Scanner Module Replacement	166
Table 38 – RIUP: Potential Hazards and Recommended Actions	167
Table 39 – I/O Module Replacement	
Table 40 – Installing Backup Battery (CPU not initialized)	170
Table 41 – Replacing a Backup Battery (CPU Powered))	171
Table 42 - HC900 PV Input Types and Ranges	178
Table 43 – System Size and Availability Summary	
Table 44 – Fiber Optics Equipment Recommendations	

Figures

Figure 1 – Small HC900 Controller Configuration	6
Figure 2 – Expanded HC900 Controller Configuration (C50/C70 CPU only)	6
Figure 3 – Single process with redundancies	
Figure 4 – Configuration with Multiple Controllers	11
Figure 5 – Redundant Configuration with multiple I/O racks	
Figure 6 – Controller Rack Components	
Figure 7 – Redundant Controller Rack Components	
Figure 8 – I/O Expansion Rack Components	
Figure 9 – Rack Options	
Figure 10 – Power Supply	
Figure 11 – Power Status Module (PSM)	
Figure 12 – Controller Module	
Figure 13 – Redundancy Switch Module	
Figure 14 – Scanner 1 Module	
Figure 15 – Scanner 2 Module	
Figure 16 – I/O Module Terminal Blocks	22
Figure 17 – RS-232 Modem Devices	23
Figure 18 – HC900 Controller Configurations	25
Figure 19 – Modular Network Structure	
Figure 20 – Modbus/TCP Framing	28
Figure 21 – Typical installation using a Cable Modem	
Figure 22 – Controller Serial Ports	31
Figure 23 – Serial Ports DIP Switch default settings	
Figure 24 – Serial Port Configurations 1 – 6	
Figure 25 – Serial Port Configurations 7 – 11	
Figure 26 – Rack Dimensions (C30 and C50)	
Figure 27 – Rack Dimensions (C50 and C50)	
Figure 28 – Vertical Spacing of Racks (all models)	30
Figure 29 – AC Input Module de-Rating	
Figure 30 – Power Supply de-Rating	
Figure 31 – Cabinet Wiring, Single Chassis	
Figure 32 – Cabinet Wiring, Multiple Chassis	
Figure 33 – Redundant power supplies each with external fuse and switch	43
Figure 34 – Master Control Relay Wiring Example	
Figure 35 – I/O Module Installation	
Figure 36 – Terminal Block Styles	
Figure 37 – Signal-Wire Grounding	
Figure 38 – Wire-Shield Grounding	
Figure 39 – Terminal Block Jumper Installation	
Figure 40 – RTD Inputs	
Figure 41 – Universal Analog Input Wiring Diagram	
Figure 42 – Examples of RTD Input Wiring	
Figure 43 – Analog Input Wiring - Eight TCs	
Figure 44 – Analog Input Wiring - Eight Resistance Inputs	
Figure 45 – Analog Input Wiring - Eight Resistance Inputs	
Figure 46 – Analog Input Wiring – Slidewire (Position Proportion Block)	
Figure 47 – 16 point High Level Analog Input Wiring	
Figure 49 – DC Input Module Wiring Diagram	
Figure 50 – DC Input Module Jumper	
Figure 51 – 32 point DC Input Module Wiring	
Figure 52 – AC Input Module Wiring Diagram	
Figure 53 – AC Input Module Jumper	86

Figure 54 – Contact Input Wiring Diagram	87
Figure 55 – DC Output Module Wiring Diagram	89
Figure 56 – DC Output Jumpers	
Figure 57 – 32 point DC Output Module Wiring	90
Figure 58 – AC Output Module Wiring Diagram	92
Figure 59 – AC Output Module Jumper	
Figure 60 – Schematic Example: Relay Output and External Wiring	93
Figure 61 – Relay Output Module Wiring Diagram	94
Figure 62 – Relay Output Module Jumpers	
Figure 63 – Pulse Counting Wiring	96
Figure 64 – Pulse Output Wiring	96
Figure 65 – Frequency Wiring	97
Figure 66 – Quadrature, Differential, External Power Wiring	97
Figure 67 – Quadrature, Single Ended, External Power Wiring	
Figure 68 – Quadrature, Differential, HC900 Power Wiring	98
Figure 69 – Quadrature, Single Ended, HC900 Power Wiring	99
Figure 70 – RS-232 Remote Access via Modems	
Figure 71 – Redundant Networks (see Table 21)	118
Figure 72 – Two redundant systems with PC supervision	121
Figure 73 – Warm Start Operation	127
Figure 74 – Cold Start Operation.	
Figure 75 – Mode Switches: Controller (left), RSM (right)	131
Figure 76 – Pathways for Upload/Download Transactions	
Figure 77 – Modes of operation on RSM	136
Figure 78 – Lead/Controller synchronization	
Figure 79 – LED Indicators on Controller CPUs (See Table 27)	
Figure 80 – LED Indicators on Scanners—1 port (left), 2 port (right) (See Table 29)	150
Figure 81 – I/O Module LED indicators	
Figure 82 – Terminal Board Connections for AI Calibration	
Figure 83 – Terminal board Connections for AO Calibration	
Figure 84 – Extended Distance Example #1	
Figure 85 – Extended Distance Example #2	183
Figure 86 – Example installation (not shown: 2 nd RTP & cable for high capacity AI/DI/DO)	
Figure 87 – Analog input terminals	
Figure 88 – Two-wire transmitter connections with common 24 VDC supply	
Figure 89 – Milliamp input connections with 250 ohm shunt resistance	188
Figure 90 – Volt, millivolt input connections	
Figure 91 – Three-wire RTD input connections	
Figure 92 – Two-wire RTD or ohm input connections	189
Figure 93 – Slidewire feedback connections for actuators	
Figure 94 Volt connections	
Figure 95 Current connections with 2-wire transmitter	209

Introduction

Purpose

This publication describes the installation, operation, and maintenance of the Honeywell HC900 Hybrid Controller. This publication includes the following sections.

Chapter Title	Page	Content
Introduction	1	Model numbers, how to verify component compatibility, function description of components, feature summary.
Components and Architecture	10	Functional features and physical characteristics of the system and of each major component of the HC900 Hybrid Controller. Networking components and methods of interconnection.
Pre-Installation Planning	36	Pre-planning considerations and procedural guidelines for planning an installation.
Rack Installation	51	Procedures for installing the major components of the system: controller rack, I/O expansion racks, and communication interconnections.
I/O Module Installation and Wiring	63	Procedures for installing I/O modules in the controller rack and I/O expansion racks, and for wiring field devices to the terminal block associated with each I/O module.
Communications Installation	101	Guidelines for installing RS-232, RS-485, and Ethernet cabling and associated components.
Operating Characteristics	126	Characteristics of the HC900 Hybrid Controller as they relate to configuration of a control strategy, and to operation of an installed and running system.
Redundant Operating Characteristics	135	Characteristics of redundant operation.
Diagnostics and Troubleshooting	141	Mechanisms that detect and react to faults in the operation of HC900 Hybrid Controller hardware and/or software components.
Analog Calibration	158	Hardware configuration required for calibrating AI and AO modules from the configuration software.
Removal and Replacement Procedures	162	Guidelines for replacing system components; includes Cautions and Warnings as applicable.
Specifications	172	Details of HC900 Hybrid Controller design and functioning.
Appendix - Installation of Remote Termination Panels (RTPs)	185	The Remote Termination Panel (RTP) provides an easy way to connect the HC900 controller to the field wiring. The RTP integrates some of the typical externally connected components, reducing wiring and setup time. It also minimizes the need for multiple wires under a single screw connection by expanding the connectivity of the shared terminals of the I/O modules.

Model Selection Guide

Description	Model number
Racks	
4 I/O Slot Rack	900R04 - 0001
8 I/O Slot Rack	900R08 – 0101
12 I/O Slot Rack	900R12 - 0101
8 Slot Rack -Red. Power	900R08R - 0101
12 Slot Rack - Red. Power	900R12R - 0101
Redundant CPU Rack	900RR0 - 0001
Controllers	
Controller C50 CPU Config.SW & Docs	900C51 - 00XX-00
Controller C50 CPU	900C52 - 00XX-00
Controller C30 CPU Config. SW & Docs	900C31 - 00XX-00
Controller C30 CPU	900C32 - 00XX-00
Controller C70 CPU Config.SW & Docs	900C71-00XX-00
Controller C70 CPU	900C72-00XX-00
Controller C70R CPU Config.SW & Docs	900C71R-0000-XX
Controller C70R CPU	900C72R-0000-XX
Redundancy switch module	900RSM - 0001
I/O Scanner - 2 Port (1 per I/O rack)	900C73R-0000-XX
I/O Scanner (for remote rack)	900C53 - 00XX-00
Redundant Power Status Module	900PSM - 0001
Power Supplies	
120/240VAC, 60W	900P01 -0001
120/240VAC, 28W	900P02 -0001
+24VDC	900P24-0001
I/O Modules	
Analog Input (8 channel)	900A01 - 0102
High Level Analog Input (16 channel)	900A16 - 0001
Analog Output, 0 to 20mA, (4 channel)	900B01 -0101
Digital Input, Contact type, (16 channel)	900G01 - 0102
Digital Input, 24VDC (16 channel)	900G02 - 0102
Digital Input, 24VDC (32 channel)	900G32 - 0001
Digital Input, 120/240 VAC, (16 channel)	900G03 - 0102
Digital Output, Relays (8 channel)	900H01 - 0102
Digital Output, 24VDC (16 channel)	900H02 - 0102
Digital Output, 24VDC (32 channel)	900H32 - 0001
Digital Output, 120/240 VAC (8 channel)	900H03 - 0102
Pulse/Frequency/Quadrature	900K01 - 0001
I/O Components	
Low VoltageTerminal Block (Euro style)	900TEK - 0001
Low VoltageTerminal Block (Barrier Style)	900TBK -0001

Description	Model number
High VoltageTerminal Block (Euro style)	900TER - 0001
High Voltage Terminal Block (Barrier Style)	900TBR - 0001
High Density Terminal Block	900TCK - 0001
Analog Input Remote Terminal Panel (RTP)	900RTA - L001
I/O Components	
Relay Output Remote Terminal Panel (RTP)	900RTR - H001
DI, DO, AO Remote Terminal Panel (RTP)	900RTS - 0001
Low Voltage RTP Cable (1.0M, 3.28ft.)	900RTC - L010
Low Voltage RTP Cable (2.5M, 8.2ft.)	900RTC - L025
Low Voltage RTP Cable (5.0M, 16.4ft.)	900RTC - L050
High Voltage RTP Cable (1.0M, 3.28ft.)	900RTC - H010
High Voltage RTP Cable (2.5M, 8.2ft.)	900RTC - H025
High Voltage RTP Cable (5.0M, 16.4ft.)	900RTC - H050
High Density RTP Cable (1.0M, 3.28ft.)	900RTC - 3210
High Density RTP Cable (2.5M, 8.2ft.)	900RTC - 3225
Filler Block Terminal Cover	900TNF - 0001
Shield Terminal Strip (package of 2)	900TSS - 0001
Terminal board jumpers (10, two pos jumpers)	900J02 - 0001
Terminal board jumpers (10, ten pos.jumpers)	900J10 - 0001
Manuals	
Full Document set on CD	900ME1-00XX-XX
Full document set, hard copy - Engish	900ME2-00XX-XX
Software	
HC Designer Config. Software CD	900W01-00XX-XX
HC Utilities Software/Documentation CD	900W02-00XX-XX
Kits & Accessories	
Redundant Power, Rack Extension Kit	900RPE-0001
Spare I/O Label Kit	51452262-501
Replacement Battery Kit	51500638-501
Ethernet Cable (10 feet)	51451432-010
Ethernet Cable (20 feet)	51451432-020
Ethernet Cross-over Cabe (20 feet)	51451996-020
Null Modem Cable	51404755-501
Null Modem Cable used with 900C70R	50004820-501
250 ohm Shunt Resistor Kit ((8/pkg.)	51205995-501
Ethernet Switching Hub (8 Ports)	50008930-001
24 VDC Power Supply	51452041-501
Operator Interface	
559-T12, Type 12	559T12-00XX-XX
559-T4, Type 4	559T04-00XX-XX
1042, with Floppy Drive	10420F-00XX-XX

Description	Model number
1042, with ZIP Drive	10420Z-00XX-XX
TREND Manager Software	TMPCON5
OI Accessories & Kits	
559-T12 Membrane Keypad	51404493-501
559-T12 Mounting Kit	51404524-501
559-T12 Operator Interface Cover (Type 4X)	51500452-501
559-T12 Bezel & Case Assembly	51404551-501
OI Accessories & Kits	
559-T4 Panel Gasket	51451315-501
559-T4 Keyboard Connector Kit	51404533-502
559-T12/T4 LCD Color Display with Backlight	51404528-501
559-T12/T4 Inverter Board	51404597-501
559-T12/T4 OI to Controller Connector	51404600-501
559-T12/T4 Cable Kit	51404797-501
559-T12/T4 Replacement Display Lamp	51404610-501
1042 Zip Drive Replacement/Upgrade Kit	51451948-501
1042 OI Knurled Fastner Kit	51452136-501
1042 OI Maintenance Parts Kit	51451582-501

Checking HC900 Model Numbers for Compatibility

ATTENTION: Be sure to check your model numbers for compatibility before installation. For a HC900 system to be fully compatible, all components must have matching model numbers.

Each component's model number format is XXXXXXX—XXYY-ZZ. For example, HC900 CPU is 900C71R-0000-40. For redundant CPU systems, component model numbers ZZ numbers must match. For non-redundant CPU systems, component model numbers YY numbers must match. See examples below.

Example of a compatible redundant system

Component	Model Number XXXXXXX-XXYY-ZZ	
HC900 CPU	900C71R-0000-40	
Scanner 2	900C73R-0000-40	
HC Designer Software	900W01-0040-40	
Manuals CD	900ME1-0040-40	
1042 Operator Interface	10420F-0040-40	

Example of a compatible non-redundant system

Component	Model Number XXXXXXX-XXYY-ZZ	
HC900 CPU	900C51R-00 40 -00	
Scanner 1	900C53R-00 40 -00	
HC Designer Software	900W01-00 40 -40	
Manuals CD	900ME1-00 40 -40	
1042 Operator Interface	10420F-00 40 -40	

Functional Description

All Controllers

The Honeywell HC900 Hybrid Controller is an integrated loop and logic controller that is designed specifically for small- and medium-scale unit operations

It comprises a set of hardware and software modules that can be assembled to satisfy any of a broad range of process control applications. The HC900 Hybrid Controller can consist of a single rack, as indicated in Figure 1, or can be can be networked with other controllers via Ethernet links to expand the dimensions of control over a wider range of unit processes, as indicated in Figure 2.

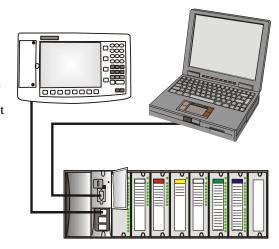
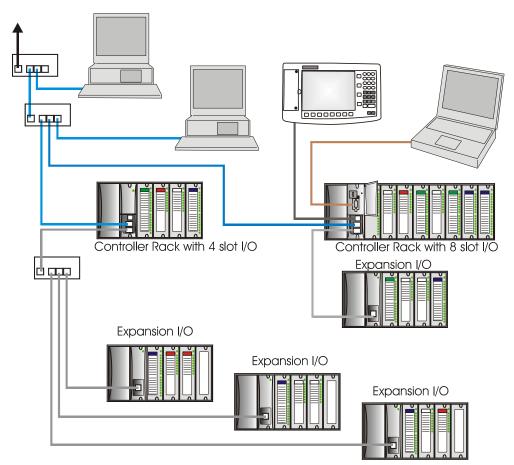
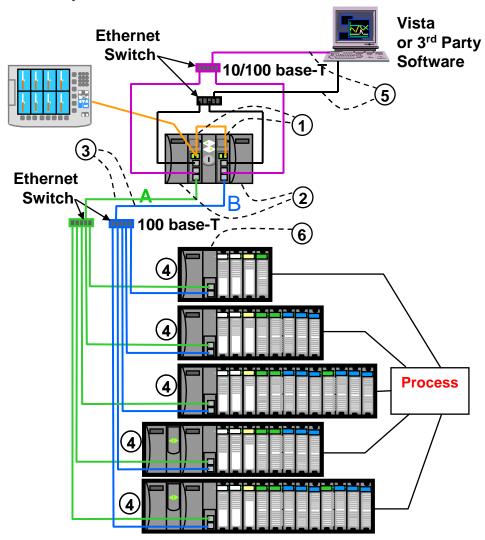


Figure 1 – Small HC900 Controller Configuration




Figure 2 – Expanded HC900 Controller Configuration (C50/C70 CPU only)

The HC900 Controller design enables users and OEMs who are adept in system integration to assemble a system that fits a broad range of requirements. Any configuration can be readily modified or expanded as requirements dictate. In initial configuration and in subsequent modifications, the HC900 Controller affords an optimum balance of performance and economy.

Configurations such as those shown in Figure 1 and in Figure 2, as well as many variations, can be assembled from modular components. Many of the components are available from Honeywell, and some are available from third-party suppliers. These modular components are available in any quantity and mix that make the most sense for a given application.

As indicated in Figure 3, the HC900 Controller includes provisions for communication via Ethernet with host systems such as the Honeywell PlantScape Vista HMI and other HMI software that supports Ethernet Modbus/TCP protocol. Also, the communication structure of the HC900 Controller enables remote placement of input/output components, allowing significant economies in cabling and wiring.

Redundancy

- ① Redundant CPUs Redundancy is provided by two C70R CPUs operating in a controller rack; this rack has no I/O. Each CPU has its own 100 base-T Ethernet physical communication link with one or more racks of I/O. A Redundancy switch module (RSM) sits between the CPUs.
- 2 Redundant CPU Power Two power supplies for the CPUs.
- 3 Redundant CPU-I/O connection Each CPU has its own 100 base-T Ethernet physical communication link with one or more racks of I/O. Multiple I/O racks require Ethernet switches.
- 4 I/O racks 5 racks shown, top to bottom: 4-slot w/1 power supply, 8-slot w/1 power supply, 12-slot w/1 power supply, 8-slot w/redundant power supplies, 12-slot w/redundant power supplies. A Power Status Module (PSM) is required with redundant power supplies. High and low capacity power supplies are available.
- (5) Redundant Networks for Host communications Redundant Networks for Host communications are provided on the C70R CPU. Both network ports are continuously active on the Lead controller. The network ports on the Reserve CPU are not available for external communications. An OPC server is available from Honeywell to support redundant Ethernet communications and automatically transfer communications during a network failure.
- 6 Scanner 2 module has 2 ports, one for each CPU connection to I/O

Figure 3 - Single process with redundancies

Feature Summary

Hardware

- Modular rack structure; components are ordered individually as needed
- CPU with Ethernet communications
- · Easy to assemble, modify, and expand
- Local (C30) and Remote input/output racks (C50/C70), private Ethernet-linked sub-network
- Parallel processing a microprocessor in each I/O module performs signal processing, to preserve update
- Power supplies provide power to CPU rack and Scanner I/O rack

Redundancy

- · Redundant C70R CPU
- Redundancy Switch Module (RSM) required between redundant CPUs
- Redundant Power Supply provides redundant power to any CPU rack or Scanner2 I/O rack
- Power Status Module (PSM) required when using a second power supply in Scanner2 I/O rack

Communications

All CPUs (except where noted):

- Two serial ports, each configurable as RS-232 or RS-485.
- RS-232 port used for link to PC configuration tool (up to 50 feet or 12.7 meters) or modem. Port configurable as Modbus RTU/TCP master or slave.
- RS-485 port used for 2-wire link to the Operator Interface (up to 2000 feet or 601 meters). Port configurable as Modbus RTU master or slave.
- Ethernet 10/100Base-T connection to: up to 5 PC hosts via Modbus/TCP protocol, Peer-to Peer communication with other HC900 Controllers, and the Internet. C70 has 2 Ethernet ports for connection to up to 10 PC hosts. It also supports Modbus/TCP Initiator function over both ports.
- Private Ethernet 100Base-T connection to I/O expansion racks (except C30 CPU)

Redundancy

- Supervisory Network Ethernet 10/100 baseT to PC Applications (HC Designer & HC Utilities), communicates to peer HC900 Controllers over Ethernet. C70R has two Ethernet ports. Lead C70R CPU supports up to 10 concurrent sockets. It also supports Modbus/TCP Initiator function over both ports.
- I/O Network Direct connection to each C70R CPU.
- Device Network RS-232 or RS-485 Serial Interface; Modbus RTU. Two serial ports available. Each port can be set as Modbus Master or Slave. Host Serial Interface for Honeywell or third party operator interface.

For more information

For complete feature summary and specifications see Specifications on page 172.

Components and Architecture

Overview

This section provides a description of each of the major components that can be included in an HC900 Controller physical configuration, and indicates some of the methods by which they can be combined.

Components

The Honeywell HC900 Hybrid Controller includes a set of hardware modules that can be combined and configured as required for a wide range of small to medium process control applications.

Some of the modules are required in all configurations. Others are optional; they are selected as appropriate to provide optional functions and/or to "size" the system, either in initial planning, or in modifying and/or expanding the system to meet changing requirements.

An HC900 Controller configuration with multiple controllers is illustrated in Figure 4. This illustration includes key-numbers that identify components that are described in Table 1.

An HC900 Redundant Controller configuration with multiple I/O racks is illustrated in Figure 5. This illustration includes key-numbers that identify components that are described in Table 2.

CAUTION

Communications lockout is possible in high network traffic conditions.

Extraneous traffic is possible when sharing bandwidth with other devices. We recommend putting the controller on a private network segment. Failure to do so could, in high traffic cases, result in communications lockout requiring the controller to be power-cycled.

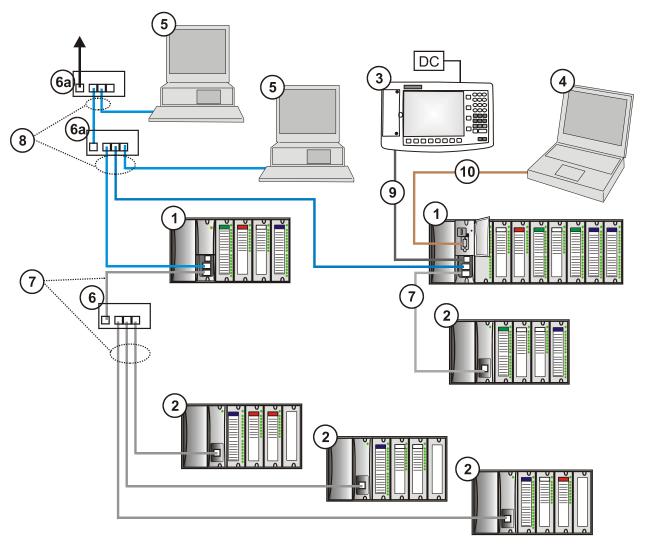


Figure 4 - Configuration with Multiple Controllers

CAUTION

The HC900-expansion I/O link is a private network and the switch used for the interconnection of the HC900 Processor and Scanners must not be connected to any other LAN or WAN. Likewise, no devices other than the HC900 components should be connected to the I/O link Switch. Failure to comply will cause communication failures on the I/O link causing I/O modules to go in and out of their failsafe settings.

Table 1 – Descriptions of Major Components (Figure 4)

Key No.	Component Name	Description	Source
1	Controller (Local) Rack	Includes: Rack, Power Supply, Controller Module, and I/O modules	Honeywell
2	I/O Expansion Rack (C50/C70 CPU only)	(Optional) Includes: Rack, Power Supply, Scanner Module, and I/O modules	Honeywell
3	Operator Interface	(Optional) link to RS-485 port on a Controller Module; provides operating and utilities displays. Includes buttons and (optional) AT-keyboard interface.	Honeywell
4	PC Configuration Tool	(Optional) PC (laptop or desktop) connects to RS-232 port on any (one) Controller module. Includes Honeywell Hybrid Control Designer (configuration software).	PC is from third-party supplier. Configuration software is from Honeywell.
5	HMI (Human- Machine Interface)	(Optional) PC link to Ethernet network, which may include other HMIs, other HC900 Controllers, and other networks (including Internet). Typically includes HMI operating software. May also include Hybrid Control Designer (configuration tool and utility software).	PC is from third-party supplier. HMI software is available from Honeywell (PlantScape or SpecView32) or from third-party supplier.
6	Ethernet 100Base-T Switch	Enables connection of the private Ethernet 100Base-T port on a Controller Module to the Scanner modules on 2, 3, or 4 I/O Expansion racks. (C50/C70 CPU only) (If a single I/O expansion rack is connected directly to a Controller Module, the Switch is not required.)	Honeywell
6a	Ethernet 10/100Base-T Switch or Router	Enables inter-connection of several 10/100Base-T Ethernet devices in an Ethernet network. Devices include other HC900 Controllers, HMIs, and can also include routers, brouters, servers, and other devices in wider networks.	Third-party suppliers.
7	Ethernet CAT5 shielded cable	Connects I/O expansion racks (C50/C70 CPU only) to controllers and/or to 10/100baseT Ethernet switches. 10'or 20' (3.04 or 6.08m)	Third-party suppliers or Honeywell
	Fiber Optics Cable	Controller to remote rack distance up to 750m (2460 ft.) with one fiber cable. Distances up to 1500m (4920 ft.) are possible with a fiber switch used as a repeater at the midpoint.	
8	Ethernet CAT5 shielded cable	Connects devices in Ethernet Open Connectivity network. Cross-over cable is used for Controller-to-PC connection; straight-through for Controller-to-e connection. 20' (6.08m).	Third-party suppliers or Honeywell
9	RS-485 cable	Belden #9271 or equivalent, up to 2000' (601m).	Third-party suppliers
10	RS-232 cable	Null modem cable, up to 50' (15.24m) (PC modem cable if used with Modems.)	Third-party suppliers or Honeywell

Redundant components

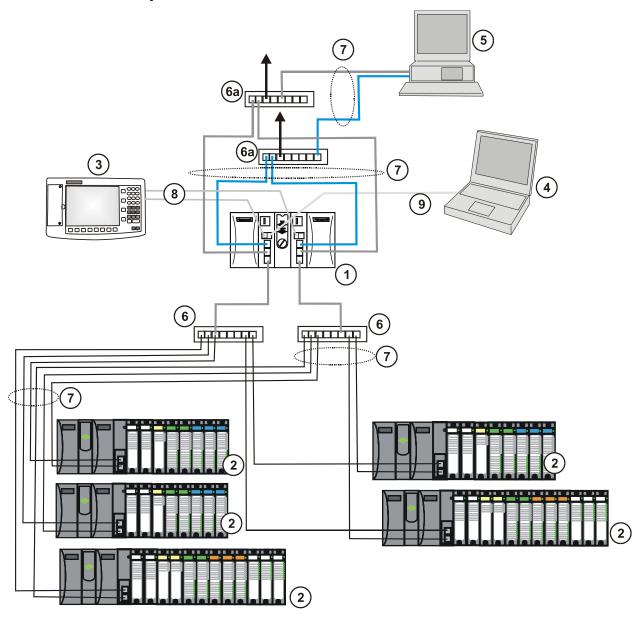


Figure 5 – Redundant Configuration with multiple I/O racks

CAUTION

The HC900-expansion I/O link is a private network and the switch used for the interconnection of the HC900 Processor and Scanners must not be connected to any other LAN or WAN. Likewise, no devices other than the HC900 components should be connected to the I/O link Switch. Failure to comply will cause communication failures on the I/O link causing I/O modules to go in and out of their failsafe settings.

Table 2 – Descriptions of Major Redundancy Components (Figure 5)

Key No.	Component Name	Description	Source
1	Controller (Local) Rack	Includes: Rack, 2 Power Supplies, 2 C70R Controllers, 1 Redundancy Switch Module (RSM)	Honeywell
2	I/O Expansion Rack	Includes: 1 Scanner 2 module, 1 Power Supply, and up to 4, 8, or 12 I/O modules. Optional second Power Supply and Power Status Module (PSM) on 8- and 12-slot I/O racks.	Honeywell
3	Operator Interface	(Optional) link to RS-485 port on a Controller Module; provides operating and utilities displays. Includes buttons and (optional) AT-keyboard interface.	Honeywell
4	PC Configuration Tool	(Optional) PC (laptop or desktop) connects to RS-232 port on any (one) Controller module. Includes Honeywell Hybrid Control Designer (configuration software).	PC is from third-party supplier. Configuration software is from Honeywell.
5	HMI (Human- Machine Interface)	(Optional) PC link to Ethernet network, which may include other HMIs, other HC900 Controllers, and other networks (including Internet).	PC is from third-party supplier. HMI software is
		Typically includes HMI operating software. May also include Hybrid Control Designer (configuration tool and utility software).	available from Honeywell (PlantScape or SpecView32) or from third-party supplier.
6	Ethernet 100Base-T Switch	Required if using 2 or more I/O Expansion racks. Provides connection of the I/O Ethernet 100Base-T port on a Controller Module to the Scanner modules. Switch not required for connection to a single I/O rack.	Honeywell
6a	Ethernet 10/100Base-T Switch or Router	Enables inter-connection of several 10/100Base-T Ethernet devices in an Ethernet network. Devices include other HC900 Controllers, HMIs, and can also include routers, brouters, servers, and other devices in wider networks.	Honeywell or third- party suppliers.
7	Ethernet CAT5 shielded cable	Connects I/O expansion racks to controllers and/or to 10/100baseT Ethernet switches.	Third-party suppliers or Honeywell
	Fiber Optics Cable	Controller to remote rack distance up to 750m (2460 ft.) with one fiber cable. Distances up to 1500m (4920 ft.) are possible with a fiber switch used as a repeater at the midpoint.	
8	RS-485 cable	Belden #9271 or equivalent, up to 2000' (601m).	Third-party suppliers
9	RS-232 cable	Null modem cable, up to 50' (15.24m) (PC modem cable if used with Modems.)	Third-party suppliers or Honeywell

Hardware Components

This section contains general descriptions of each of the major components of the HC900 system. For environmental specifications, refer to the section on Pre-Installation Planning.

HC900 Controller Rack

An HC900 Controller ("local rack") is shown in Figure 6. As indicated in this figure, the Controller Rack includes:

- 1. Rack, available in 4- 8-, or 12-slot versions
- 2. Power Supply
- 3. Controller Module
- 4. Grounding bars (for I/O wiring; optional)
- 5. Input/Output modules.
- 6. I/O Terminal Blocks

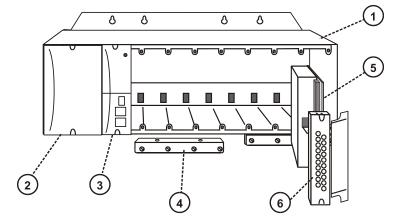


Figure 6 - Controller Rack Components

HC900 Redundant Controller Rack

A HC900 Redundant Controller is shown in Figure 7.

- 1. Rack
- 2. Redundancy Switch Module (RSM) . Interface between Lead/Reserve controllers.
- 3. Lead/Reserve controllers. Two C70R CPUs, designated "CPU-A" (left), "CPU-B" (right).
- 4. Two Power Supplies.

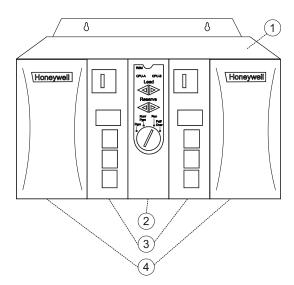


Figure 7 – Redundant Controller Rack Components

I/O Expansion Rack

I/O expansion ("remote") racks, shown in Figure 8, are available to accommodate additional input/output modules, and/or to enable location of I/O modules close to the process and remote from the controller. For C70R, all I/O is in a rack or racks separate from the controller rack.

An I/O expansion rack includes:

- 1. Rack, available in 4-8-, or 12-slot versions
- 2. Power Supply
- 3. Scanner 1 Module (C50/C70) (shown) or Scanner 2 Module (C70R)

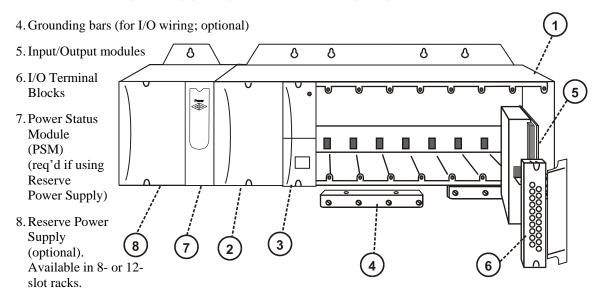


Figure 8 – I/O Expansion Rack Components

Rack Options

Racks are available in 4-slot, 8-slot, and 12-Slot versions. Racks are interchangeable between the Controller rack and an I/O expansion rack (C50, C70, C70R CPU only), and all three versions shown in Figure 9 are available for either purpose.

C70R only: I/O rack has Scanner 2 Module. 8 and 12 slot I/O racks can be modified with additional slots for optional Reserve Power Supply and Power Status Module.

Note: You can install redundant power on any I/O rack.

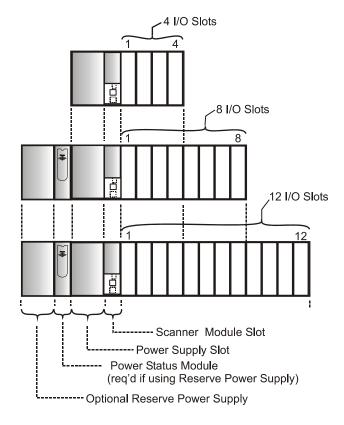


Figure 9 - Rack Options

Power Supply

The P01 Power Supply, shown in Figure 10, provides 5 Vdc and 24 Vdc to the backplane connectors in the local and remote racks. Power Supply is used in each Controller Rack, I/O expansion racks and for all rack versions (4-slot, 8-slot, and 12-Slot).

The lower capacity P02 power supply is available for reduced I/O applications. See page 37 to determine correct power supply.

P24 power supply provides 5VDC and 24VDC to satisfy the power requirements of a single controller with I/O, a Remote I/O rack or a Redundant C70R CPU. The 60 watt capacity requires minimal de-rating of the available HC900 I/O modules. A tool-secured door covers the voltage connections. An internal non-replaceable fuse limits supply current under certain fault conditions.

Each power supply includes an internal 5.0-amp fuse that is not field-replaceable. (An external fuse may be added by the user. See page 57.)

Items shown with key numbers:

- 1. Voltage test points (P01model only)
- 2. AC Input terminal block
- 3. Wiring label
- 4. Grounding lug (Reference; lug is not part of Power Supply; it is staked to bottom of Rack.)

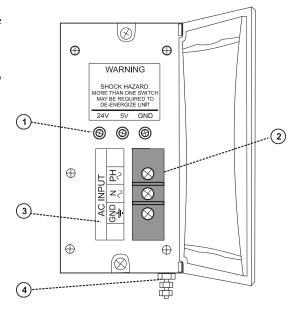


Figure 10 – Power Supply

Power Status Module (C70R)

The Power Status Module (PSM) (Figure 11) sits between redundant power supplies on the I/O rack (see page 16). It is a status module for both power supplies and indicates which are in use, PS-1 (left) or PS-2 (right) or both (typical).

When the status indicator for either or both of the power supplies is lit, it is reporting that the status of the associated power supply is good and that the outputs are with in specified limits. When the status is off, either the power supply is off or the voltages are out of tolerance.

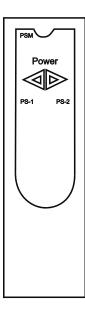


Figure 11 - Power Status Module (PSM)

Controller Module

Figure 12. C30, C50, C70, C70R Controllers share the same features, with exceptions noted.

- 1. CPU model number (C30, C50, C70, C70R).
- 2. Lithium battery (beneath cover), which is readily accessible for field replacement.
- 3. Mode switch (Pgm, Run/Pgm). Not present on C70R; see RSM.
- Two serial ports, S1 and S2, each configurable as RS-232 or RS-485. RS-232 interfaces to PC, external modem or Modbus devices. RS-485 interfaces to PC, Operator Interface or Modbus devices/host.
- 5. LED status indicators for communications functions.
- 6. Connection to I/O port of Scanner Module. C50/C70/C70R only.
- Second Ethernet Host Connection to PC applications or peer HC900 controllers. C70/C70R only.
- 8. First Ethernet Host Connection to PC applications or peer HC900 controllers.
- LED status/diagnostic indicator for serial port S2 (left).
- 10.LED status/diagnostic indicator for serial port S1 (right).
- 11.LED status/diagnostic indicator for controller module.

Redundant controller rack contains two C70Rs (see page 15). Left CPU is designated CPU-A, right CPU is CPU-B; either CPU can be Lead.

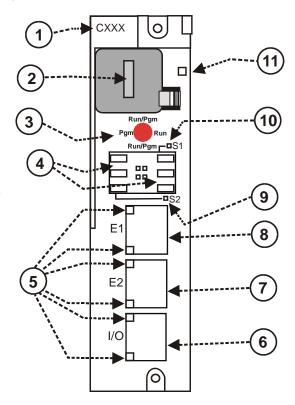


Figure 12 - Controller Module

Redundancy Switch Module (C70R only)

The Redundancy Switch Module (RSM) is shown in Figure 13. It sits between C70R controllers on rack. Left Controller is designated "CPU-A"; right Controller is "CPU-B." Features include:

- 1. Lead/Reserve controller status indicators.
- Keyed switch for manual changes to controller modes or to facilitate a Manual Fail Over.

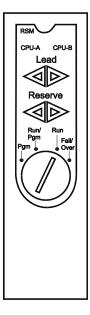


Figure 13 - Redundancy Switch Module

Scanner 1 Module (C50/C70 only)

The Scanner 1 Module is shown in Figure 14. It sits in the I/O rack and provides the link between the controller and remote I/O. Features at the front of the module include:

- 1. LED status indicator for scanner functions.
- 2. One private Ethernet 10Base-T Port; connects to the I/O expansion port on Controller Module (or to a port on a Switch that connects to the Controller Module)
- 3. LED status/diagnostic indicators for communications functions.

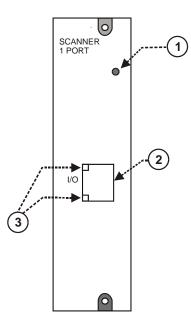


Figure 14 - Scanner 1 Module

Scanner 2 Port Module (C70R only)

The Scanner 2 Port Module is shown in Figure 15. The dual ports provide redundancy through the 2 CPUs. Features at the front of the module include:

- 1. LED status/diagnostic indicator for scanner functions.
- 2. I/O port A. Private Ethernet 10Base-T Port. Connects directly to I/O port on CPU-A (or indirectly through a switch).
- 3. I/O port B. Private Ethernet 10Base-T Port. Connects directly to I/O port on CPU-B (or indirectly through a switch).
- 4. LED status/diagnostic indicators for communications functions

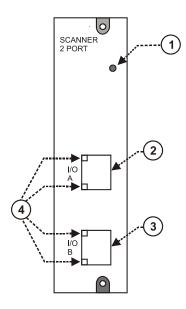
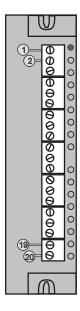



Figure 15 - Scanner 2 Module

Input/Output Modules

I/O module types:

- 16 point high level analog input module: each point is configurable for V or mA. Point-to-point isolation.
- 4 point isolated analog output module: Supports from 0 to 20mA each.
- 16 point digital input modules: Contact closure type, DC voltage and AC voltage types.
- 32 point digital input module: DC voltage.
- 8 point AC or 16 point DC digital output modules (sinking type).
- 32 point digital output: DC voltage (sourcing type)
- 8 point relay output module: four form C type and four form A type relays.
- 8 point Universal Analog Input module
- 4 channel Pulse/Frequency/Quadrature I/O module

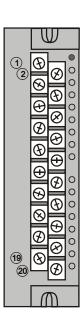


Figure 16 – I/O Module Terminal Blocks

Each I/O module includes a status indicator for the module. Digital Input and Digital Output modules also include a status indicator for each channel. Terminal blocks available include the Euro style (Figure 16 left) and the Barrier style (Figure 16 right).

For more information on I/O modules and associated terminal blocks, refer to the section in this manual on Input/Output Installation and Wiring.

Personal Computer

A Personal Computer is required for creating the control and data acquisition strategy (configuration file) that runs in the controller, using the Hybrid Control Designer configuration software. The PC can also be used to download/upload configuration files to/from the controller, and can be used to download program updates to firmware in the Controller Module and/or Scanner Modules.

A PC can be connected to the controller via the RS-232 Port on the Controller module, and can also be networked to the controller via the Ethernet 10/100Base-T Open Connectivity Network port.

Redundant controllers: PC communicates with Lead Controller only.

NOTE: For specific PC requirements and for specific software requirements, refer to the Hybrid Control Designer Users Manual.

RS-232 Modem Devices

The PC configuration tool connects from the RS-232 serial port of the Controller Module to a serial port on the PC. (Figure 17) The PC can be located remote from the Controller by using Modems and telephone links. Modems and suitable cabling are available from third-party vendors.

Redundant controllers: PC communicates with Lead controller only.

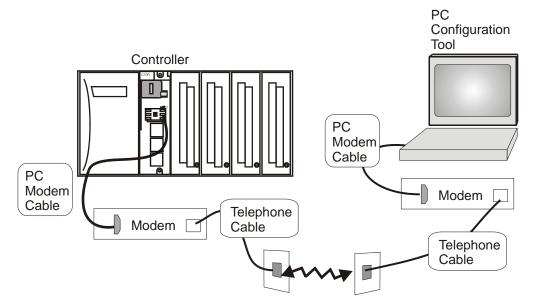


Figure 17 - RS-232 Modem Devices

Ethernet Devices/Considerations

Ethernet device requirements vary with specific applications. Regarding intended use, however, they fall into two categories:

- **CAUTION** The HC900-expansion I/O link is a private network and the switch used for the interconnection of the HC900 Processor and Scanners must not be connected to any other LAN or WAN. Likewise, no devices other than the HC900 components should be connected to the I/O link Switch. Failure to comply will cause communication failures on the I/O link causing I/O modules to go in and out of their failsafe settings.
- Components of the Ethernet Open Connectivity Network, which links an HC900 Hybrid Controller to Peers, to HMI Supervisory Stations, and to other Ethernet 10/100Base-T devices that support TCP/IP. The Ethernet Open connectivity Network is potentially more complex than the I/O expansion network, and in some cases, may require the services of an IT networking professional.

I/O Network

I/O Expansion Network (C50/C70 CPU only)

Examples of HC900 Controller I/O expansion configurations are shown in Figure 18.

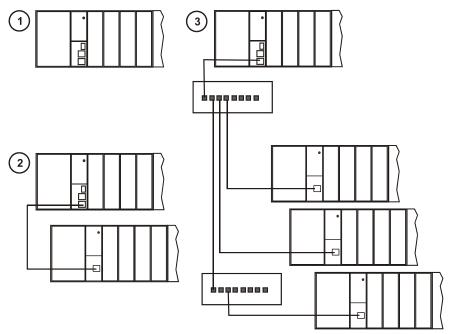


Figure 18 - HC900 Controller Configurations

In Figure 18, any of the racks shown in each controller configuration can be 4-, 8-, or 12-slot versions.

The Ethernet cables for the I/O expansion links are standard shielded Cat 5 cables, with standard RJ45 connectors. Each cable segment can be up to 100 meters (328 feet) long.

You can also use fiber optic cable for connections between the controller and a remote rack. Distances up to 750m (2460 ft.) are possible with one fiber cable. Distances up to 1500m (4920 ft.) are possible with a fiber switch used as a repeater at the midpoint. (See page 182)

Configuration 1 is the C50/C70 CPU with I/O but no I/O expansion racks.

Configuration 2 shows the C50/C70 CPU with 1 I/O expansion rack. The Ethernet cable connects directly between the 10Base-T connectors on the C50 CPU Controller Module and the Scanner Module.

Attention: For 2 or more I/O expansion racks a switch is required. Use only Honeywell recommended switches. The total number of switches is limited to 2 in series between a CPU and its scanners.

Configuration 3 shows the C50/C70 CPU with 3 I/O expansion racks. Since there are at least 2 I/O expansion racks a switch is required. When an Ethernet switch is used to connect to expansion I/O, a cable goes between the I/O port on the controller to the switch. Two cables go from the switch to 2 scanners. A third cable goes from the switch to a second switch, which connects to a third remote scanner.

I/O implementation requirements include:

• Constructing a configuration file, and loading it into the Controller Module. This file includes I/O numbering assignments for each I/O Function Block regarding Rack Number, Module Number ("slot" number, or position in the rack, starting from the left), and Channel Number.

- Physically assigning Rack Numbers, by positioning jumpers or DIP switches in the Scanner Module for each rack.
- Placing the appropriate module type in each slot in each rack.

The I/O expansion network uses Honeywell private protocol that optimizes I/O performance and security.

The configuration and operation of the I/O expansion network is automatic, it is entirely under control of built-in private software that resides in the Controller Module and in each Scanner Module included in the HC900 system. The controller examines the control strategy stored in its memory, verifies that the physical configuration (Rack Numbers, and I/O Module type- by Module Number) matches the stored control strategy, and establishes communication with each of the I/O modules in each of the I/O racks.

I/O Expansion Network (C70R)

I/O for redundant controllers is the same as I/O Expansion Network page 25, with the following exceptions/notes.

- In Figure 18, any of the racks shown in each controller configuration can be 4-, 8- or 12-slot versions. Redundant I/O power not available with 4-slot.
- I/O ports are 100 Base-T instead of 10Base-T.
- Maximum of 2 switches between each CPU (CPU A and CPU B) and the I/O racks.

Ethernet Open Connectivity Network

The configuration of the Ethernet Open Connectivity Network varies with specific applications in purpose and in complexity. In some applications, configuration is straightforward and within the capabilities of experienced installation technicians. In other applications (for example, those that include inter-connection to other networks such as Intranet and Internet), a working knowledge of networking is required.

The Ethernet Open Connectivity Network for a given HC900 Controller enables:

- Redundant Networks.
- Peer-to-peer communication
- Connection to other PC hosts
- Inter-connection to other networks (such as for sending Alarm/Event messages via e-mail.)

CAUTION

Communications lockout is possible in high network traffic conditions.

Extraneous traffic is possible when sharing bandwidth with other devices. We recommend putting the controller on a private network segment. Failure to do so could, in high traffic cases, result in communications lockout requiring the controller to be power-cycled.

Redundant Networks

Honeywell OPC Server supports redundant networks. Up to 10 connections may be distributed in any combination across the controller's 2 network ports (E1 and E2). PC hosts may include, for example, HMI supervisory software and/or Hybrid Control Designer configuration software. Redundant ports may be used in a simplex mode (non-redundant).

Peer-to-Peer Communication

Peer-to-peer communication enables any given HC900 Controller to request a peer relationship with up to 32 other HC900 Controllers; other controllers can request a peer relationship with the controller. The total number of peers that a controller can have a relationship with is 32. Peer-to-peer communication uses the Ethernet Open Connectivity network and employs standard User Datagram Protocol (UDP) for fast and efficient transfer of information. Peer-to-peer communication is based on fail-safe and data expiration mechanisms that provide for fault and loading considerations without requiring reserved network bandwidth allocation. Peer-to-peer is designed to be easy to configure as part of a device's standard configuration and does not require the distribution of a global database.

With redundant controllers, peer-to-peer communication always stays with the Lead controller.

Implementing peer-to-peer communications involves:

- Interconnecting controllers with Ethernet media and networking devices (cables, switches, etc)
- Configuration (via Hybrid Control Designer):
 - Controller configuration, which includes entry of an IP address and a Subnet Mask, and a Controller Name for each controller. (The Controller Name is used only by the Honeywell proprietary software for network access between controllers; it should not be confused with a Network Domain Name or Workgroup Name.)
 - Peer Data Exchange (PDE) function blocks, which are included in the control strategy (configuration file). PDE function blocks include PDE Control, PDE Write, and PDE Read. (Refer to the HC900 Hybrid Controller Function Block User Guide for additional information.)

An illustration of HC900 Controller Peer-to-Peer on a Local Area Network (LAN) is given in Figure 19. Typically, a Router is used for interconnection to another network (LAN, WAN, or other).

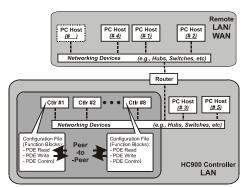


Figure 19 - Modular Network Structure

Connection to PC Hosts

Connection to PC hosts (for example, PCs that include HMI supervisory software and/or Hybrid Control Designer configuration software) can be via Modbus/TCP as well as serial Modbus RTU over either the RS-485 or RS-232 communications ports. Both ports support Modbus RTU and are configurable as master or slave. The 5 TCP hosts can be concurrent with Modbus hosts on one or both of the other ports. Any given controller is capable of concurrent communication with up to five PC hosts. (The meaning of the term "host" varies, but for this definition, a PC host is any PC that is on the same LAN as the controller, or on any LAN or WAN (Wide Area Network) that is network-connected to the controller.

Each HC900 Controller has five "sockets" (software and memory resources), each of which can service data requests from any networked PC on a client (host)/server (controller) basis. C70R has 10 sockets. The sockets are available on a first-come, first-served basis. Typically, when the data service for any PC Host

request is completed or times out, it allows the socket to become available to any other PC Host in the hierarchy of networks.

Note: PDE communications, discussed previously, do not use the PC host connection sockets. PDE communications are separate from (and are transmitted concurrent with) PC host-to-controller communications.

The PC host can include software that closely relates to and supports controller functioning and can also include other software that is related remotely or not at all. Closely related software can include:

Either

Hybrid Control Designer – for generating and managing configuration files,

Or

HMI (Supervisory/Data Acquisition Software) or Operator Panel with Modbus/TCP driver

Or

Both configuration and HMI software (and or panel)

All communications between a controller and a PC host use Open Modbus/TCP protocol, whose widespread use is making it an industry standard. Modbus/TCP is basically an adaptation of the Modbus messaging structure that uses TCP/IP for a message carrier. In general, Modbus messaging is available in two versions: ASCII, in which each eight-bit byte is sent as 2 ASCII characters, and RTU, in which each byte is sent as two four-bit hexadecimal characters. Each Modbus message frame is embedded into a TCP/IP datagram as indicated in Figure 20.

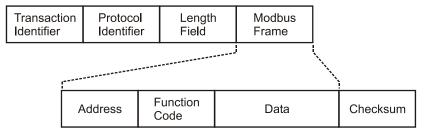


Figure 20 - Modbus/TCP Framing

The HC900 Controller uses either Modbus/TCP or Modbus RTU, not ASCII. The Modbus mapping structure for the HC900 Controller is based on the mapping structure employed in Honeywell's UMC800 Controller, and the function codes and methods for parameter access are also virtually identical.

Modbus Maps

In your controller's configuration certain parameters are each automatically assigned a Modbus address. These include certain types of function blocks (such as loops and set point programmers), signals and variables, among other items. Through their addresses these parameters can be accessed or displayed remotely, such as by a third-party operator interface. Collectively, these Modbus addresses and parameters are known as the Modbus map.

Two Modbus Mapping options exist: Fixed map and Custom map

Using HC Designer, you can use a pre-defined **fixed map** where common parameters are mapped out automatically at fixed addresses, or you can configure a **custom map** for configurations rev. 4.0 or higher.

Function blocks added to the controller in release 4.0 and higher are not automatically included in the Fixed Modbus Map. To access the registers of these function blocks, the Custom Modbus Map must be used and the block data manually inserted into the custom Modbus map.

HMI Supervisory/SCADA software is available from various suppliers, and functionality and setup requirements vary with suppliers and with specific products. In all cases, the software selected must be compatible with Open Modbus/TCP protocol.

The user can use the standard Modbus command set to generate a custom set of drivers for his specific application, or may purchase additional software (for example, OPC with Modbus /TCP protocol) to reduce or virtually eliminate development tasks.

HMI software

HMI software available for use with the HC900 Controller includes, but is not necessarily limited to the following packages.

• available from Honeywell

- Plantscape Vista Software, which operates under Windows 2000/XP Pro operating software, provides PC-based supervisory control and data acquisition. This package includes a large selection of standard operating display templates, which can reduce development time significantly. PlantScape includes a full graphic display development environment, enabling development of custom graphics that include animated responses to changing process conditions. A batch reporting option is available in release 400, which includes a standard template for creating batch reports.
- SpecView32 (SpecView Corporation)
- OPC Server (works with redundant and non-redundant networks)

Other software (available from third-party sources)

The following software, which incorporates Modbus/TCP connectivity, is available from third-party sources:

- -The Fix Family (Intellution Incorporated)
- -Wonderware (Wonderware Corporation)
- -Citect (CI Technologies)
- -OPC server/client software (various; available from Kepware and others)

Note: The items in this list are not sold by Honeywell. They have not all been tested and certified by Honeywell, and are not necessarily recommended or endorsed by Honeywell for any specific use.

Inter-Connection to Other Networks

In many cases, an HC900 Controller application will include a single, free-standing controller that involves no connections via the Ethernet Open Connectivity network. In other cases, the HC900 Controller will be a member of a Local Area Network (LAN) as indicated in Figure 19. The HC900 controller LAN may be very simple, or it may include many devices in a complex and very sophisticated structure. In any case, it must always be regarded as a single, modular entity that can be protected from intrusion by any other networking device to which this LAN is connected.

Various types of networking devices that enable selective connection to other networks are available. A "Router" is commonly used for this purpose.

Routers can examine and "filter" message packets, permitting passage of wanted messages and denying passage of all others.

The feature that gives the Router its name is it enables translation of IP addresses, which enables networks with dissimilar network IP addresses to communicate as though they were members of the same network.

This feature is particularly useful when an HC900 Controller LAN is installed under "local addressing rules". That is, IP addressing can be assigned without approval of or conflict with world Internet governing bodies. A default IP address is provided in each C30 and C50 CPU: 192.168.1.254. Later, when connecting to networks with more stringent addressing requirements, it is necessary only to configure the Router with address mapping and connect it between the existing LAN and the other existing network.

Connections to other networks vary in purposes and methods; some of these are described below.

E-Mail Communications

The HC900 Controller includes e-mail software that enables communication of Alarms and Events to up to three Internet addresses. Implementing this feature consists of:

- Using the Hybrid Control Designer to configure:
 - Alarm Groups and Event Groups
 - Assignment of specific alarms to priority and e-mail enabling
 - E-Mail address lists
 - SMTP mail server IP address
 - Default gateway must be configured in order to send e-mail. With redundant controllers, two default gateways need to be configured; one for each of the redundant networks (assuming both are being used). This will typically be the LAN side IP address of the routers used to connect the controller to the external network.
- Installing and configuring hardware
 Note: This data is included for reference. The following items should be implemented by qualified IT/MIS personnel.
 - Install and configure a Router to provide isolation and security. (Figure 21) (This should be part of standard network installation.)
 - Install and configure internet access to Simple Mail Transport Protocol (SMTP) server. This may include the location of an existing server on an existing network.

Note: Consult your service provider for availability of access to network, local cable, or DSL in your area.

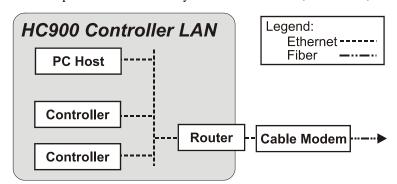


Figure 21 – Typical installation using a Cable Modem

Serial Ports (RS-232 and RS-485)

Overview

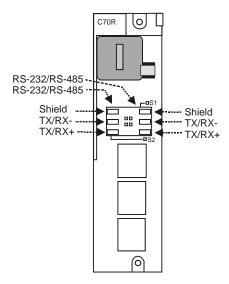


Figure 22 - Controller Serial Ports

- S1 default setting is RS-232; S2 default setting is RS-485. Each port can be set to RS-232 or RS-485 (see page 32).
- Ports configurable as ELN (default) or Modbus RTU.
- · Controller can act as Modbus master or slave through either port.
- · Controller can be slave to masters such as
 - Honeywell Operator Interface (1040, 559). Must be on RS-485 port S2. Will not work on port S1 even if set to RS-485. Will not work on RS-232 port with 232/485 converter.
 - Honeywell HC Designer PC software
 - Third party PC HMI software
 - Third party Operator Interface
- · Controller can master to slaves such as
 - Any Honeywell Modbus device (e.g., recorders, controllers, flame safety)
 - Any non-Honeywell Modbus device.
- Only one master port at a time, can't have RS-232 and RS-485 both as master ports.
- For multiple slaves on RS-232 port, a 232-to-485 converter is required.
- Modbus master ports default to slave ports, ELN protocol when CPUs are in Program mode.
- Baud rates to 57,600

Setting serial ports S1 and S2 to RS-232 or RS-485

S1 serial port default setting is RS-232; S2 serial port default setting is RS-485 terminated. Functionality is determined by DIP switch setting on SW1 (for S1) and SW2 (for S2). See Figure 23. To change either port's setting, use the switch settings in Table 3. A small slotted screwdriver or paperclip works well; avoid using pencils.

Table 3 – Serial port DIP switch settir	ıas
---	-----

RS-232	RS-485 unterminated	RS-485 terminated (last link in network)	Port disabled
0N 1234	ON 1234	ON 1234	ON 1234

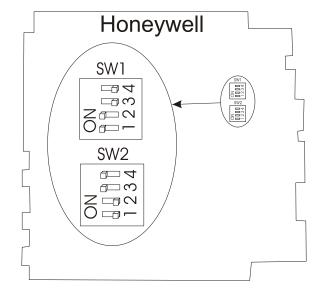
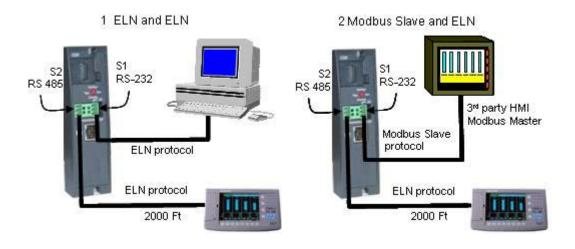


Figure 23 – Serial Ports DIP Switch default settings

Simultaneous port configurations

Figure 24, Figure 25 and Table 4 show the ways the CPU's two serial ports can be configured simultaneously.

The referenced figures show the C30 but any controller can be used. Port S2 (left side) is RS-485 by default; port S1 (right side) is RS-232 by default.


Be sure to make RS-485 connections to both CPU-A and CPU-B of redundant controllers having C70R CPUs.

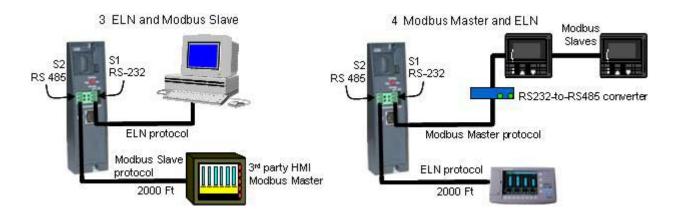

Do not make RS-232 connections to both CPU-A and CPU-B of redundant controllers.

Table 4 – Simultaneous serial port configurations

See	RS-232 Port Configured as	RS-485 Port configured as
Figure 24 #1	ELN device*	ELN device*
Figure 24 #2	Controller is Modbus Slave	ELN device*
Figure 24 #3	ELN device*	Controller is Modbus Slave
Figure 24 #4	Controller is Modbus master to multiple slaves**	ELN device*
Figure 24 #5	Controller is Modbus Master to single slave	ELN device*
Figure 24 #6	Controller is one of multiple Modbus slaves**	ELN device*
Figure 25 #7	Controller is Modbus slave	Controller is Modbus master to multiple slaves
Figure 25 #8	Controller is Modbus master to multiple slaves	Controller is Modbus slave
Figure 25 #9	Controller is Modbus slave	Controller is Modbus slave
Figure 25 #10	ELN device*	Controller is Modbus master to multiple slaves
Figure 25 #11	Controller is Modbus slave via modem	ELN device*

^{*}Such as Honeywell HCDesigner configuration software running on a PC or Honeywell 1040/559 Operator Interface **Requires RS-232-RS-485 converter

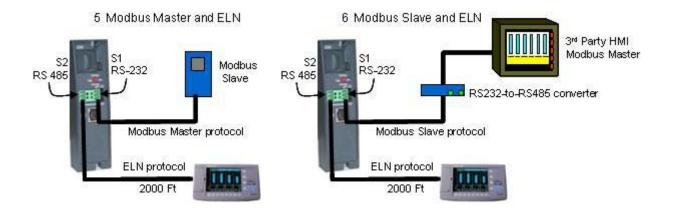


Figure 24 - Serial Port Configurations 1 - 6

8 Modbus Master and Modbus Slave 7 Modbus Slave and Modbus Master Modbus Slaves 3rd party HMI RS 485 Modbus Master RS232-to-RS485 converter Modbus Master protocol Modbus Slave protocol Modbus Slave Modbus protocol Slaves 3rd party HMI 2000 Ft Modbus Master 2000 Ft protocol 9 Modbus Slave and Modbus Slave 10 ELN and Modbus Master 3rd party HMI Modbus Master Modbus Slave protocol ELN protocol Modbus Slaves Modbus Slave Modbus Master protocol 3rd party HMI protocol Modbus Master 2000 Ft 2000 Ft

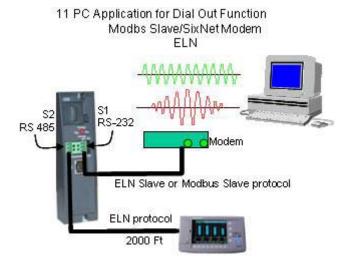


Figure 25 - Serial Port Configurations 7 - 11

See also

Refer to Communications Installation on page 101 for details on communications.

Pre-Installation Planning

Overview

Methodical pre-planning of an installation will preclude false starts and errors that can cause costly hardware re-configuration and/or poor system performance. Factors to consider in your pre-installation planning include:

- C70R CPUs require the 900P02 Power Status Module
- I/O Rack can use AC Power Supply 900P01, 900P02 (see page 37) or +24DC Power Supply 900P24 (see page 38).
- Limit of 10 Analog Output modules per rack. Limit of 4 PFQ modules per rack.
- Power Supply rack space (if using redundant I/O power) (see page 39)
- Rack orientation and mounting (see page 38)
- Remote Terminal Panels (see page 40)
- Environmental conditions (see page 40)
- Heat rise de-rating (see page 41)
- Cabling/wiring distance planning (see page 42)
- Electrical considerations: controller grounding, CE conformity, grouping wires, master control relay for emergency shutdown (see page 44)
- System monitor function blocks (see page 50)

AC Power Supply Selection for racks with I/O

To determine which I/O rack AC power supply to use (P01 or P02), calculate power requirements below.

ATTENTION

Using inadequate power supply will cause the controller to cycle power on and off.

	Α		В	С	D		 E	
Module type	Enter Quantity		Max Current @ 5 V	Max Current @ 24 V	Calculate 5V current (D=A*B)	- 1	Calculate 24V curre (E = A * C)	ent
Controller (C30)	()	820 mA	0 mA	()	((0)
Controller (C50)	()	930 mA	0 mA	()	((0)
Controller (C70)	()	1150 mA	0 mA	()		(0)
Controller (C70R)	()	1500 mA	0 mA	()	-	(0)
Scanner 1 Port	()	670 mA	0 mA	()	((0)
Scanner 2 Port	()	770 mA	0 mA	()	((0)
Power Status Module (PSM)	()	22 mA	0 mA	()	((0)
Analog Input (8 pts)	()	40 mA	25 mA	()	(()
Analog Input (16 pts)	()	75 mA	50 mA	()	(()
Analog Output (4 pts)*	()	40 mA	200 mA	()	(()
AC Digital Input (16 pts)	()	130 mA	0 mA	()	((0)
DC Digital Input (16 pts)	()	130 mA	0 mA	()	((0)
Contact Input (16 pts)	()	130 mA	40 mA	()	(()
DC Digital Input (32 pts)	()	215 mA	0 mA	()		(0)
AC Digital Output (8 pts)	()	220 mA	0 mA	()	((0)
DC Digital Output (16 pts)	()	340 mA	0 mA	()	((0)
DC Digital Output (32 pts)	()	235 mA	0 mA	()	((0)
Relay Output (8 pts) ()	110 mA	100 mA	()	(()
Pulse/Frequency/Quadrature**	()	110 mA	250 mA	()	(()
*Limit 10 Analog Output module	s per I/O ra	ack.			Total mA @ 5V =		Total mA @ 24V=	=
** Limit 4 PFQ modules per I/O	rack.				()	(()
Complete columns A, D and E a	above.							
Is column D total mA @ 5V less	than 2000	mΑ	?	Yes/No				
Is column E total mA @ 24V less than 900mA? Yes/No								
If the answers to 1 and 2 are YI	ES, go to 4.	If t	he answer to	1 <u>or</u> 2 is NO), use power supply 9	00	P01-0001.	
Multiply 5V total by 5.1.								
Multiply 24V total by 24.5. ()								
Sum results of 4 and 5. ()								
Divide results of 6 by 1000 ()								
Is the result of 7 less than 28? Yes/No								
If the answer to 8 is Yes, use power supply 900P02-0001								
If the answer to 8 is No, use power supply 900P01-0001								

DC Power Supply

The P24 DC power supply is for use with +24V input power applications. The wattage rating is the same as the P01.

Rack Orientation and Mounting

Racks must be mounted as indicated in illustrations throughout this manual, so as to provide for vertical airflow through the racks. That is, racks must never be mounted vertically, and must never be mounted with the backplane horizontal (for example, flat on a horizontal panel or tabletop). Environmental specifications apply only to the normal mounting configuration.

Rack dimensions, including overall dimensions and patterns for drilling holes for mounting, are given in Figure 26 and Figure 27. Vertical spacing of racks, which is required for rack ventilation and for routing wires, is shown in Figure 28.

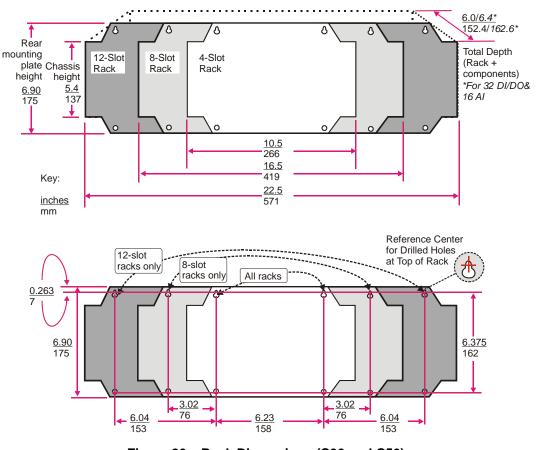


Figure 26 – Rack Dimensions (C30 and C50)

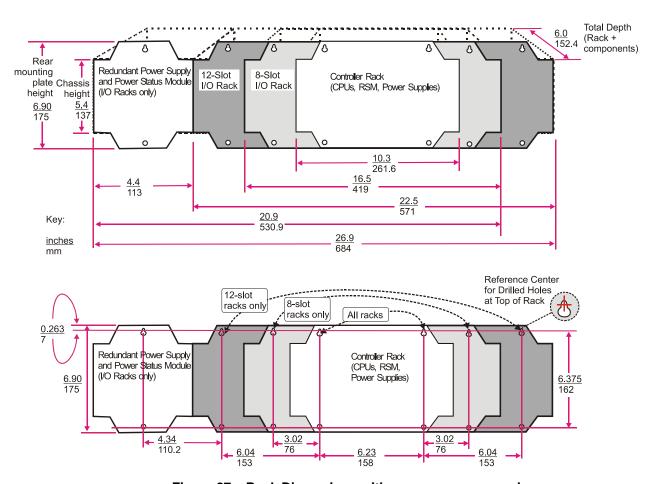


Figure 27 - Rack Dimensions with reserve power supply

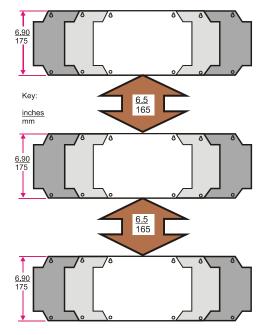


Figure 28 - Vertical Spacing of Racks (all models)

Remote Termination Panels

If your controller will be mounted in a separate panel with intermediate terminations between field wiring and controller wiring, consider using RTPs to replace the intermediate terminations. Pre-wired cable assemblies for the RTPs eliminate the need for separate wiring terminations between the controller and the intermediate terminal boards. For details see page 185.

Environment

The HC900 Controller must be mounted in suitable equipment enclosures. That is, all components such as the Controller rack, I/O Racks, and the Operator Interface manufactured by Honeywell must be mounted in approved furniture designed for industrial applications.

See Environmental Conditions and Approvals on page 177.

Heat Rise De-rating

The HC900 is rated to operate at 60° C. However, for maximum reliability, the following guidelines should be observed for applications above 52° C.

- 1. Locate lower-power modules (Analog Input, Contact Input, etc) beside the Controller/Scanner Module, and keep higher-power modules (AC Output, AC Input, etc) away from it. For power consumption of each module, refer to Table 5.
- 2. For 240 Vac applications and temperatures above 56° C, or 264 Vac, 52° C, de-rate the number of ON inputs per AC input module. (See AC Input de-rating data, see Figure 29.)
- 3. Limit the number of Analog Output modules to a maximum of 10 per rack. (See Figure 30)

Table 5 – Power Applied, by Module Type

Module	HC900 Hardware Power (Watts)	Field Power (Watts)	Total Power (Watts)
Controller C30	4.2	0.0	4.2
Controller C50	4.7	0.0	4.7
Controller C70	5.9	0.0	5.9
Controller C70R	7.7	0.0	7.7
Redundancy switch module (RSM)	0.1	0.0	0.1
Power Status Module (PSM)	0.1	0.0	0.1
Scanner 1 Port	3.4	0.0	3.4
Scanner 2 Port	3.9	0.0	3.9
Analog Input (Universal)	0.8	0.0	0.8
Analog Input (High level)	1.6	0.0	1.6
Analog Output	5.1	0.0	5.1
Contact Input	1.6	0.0	1.6
Relay Output	3.0	0.0	3.0
16 pt DC In (@ 24V)	0.7	2.6	3.3
16 pt DC In (@ 32V)	0.7	5.1	5.7
32 pt DC In (@ 24V)	1.1	3.1	4.2
32 pt DC In (@ 32V)	1.1	5.1	6.2
16 pt DC Out	1.7	1.2	2.9
32 pt DC Out	1.2	1.8	3.0
AC In (@120V)	0.7	1.9	2.6
AC In (@240V)	0.7	7.7	8.3
AC Out	1.1	12.0	13.1
PFQ	6.7	0.1	6.8

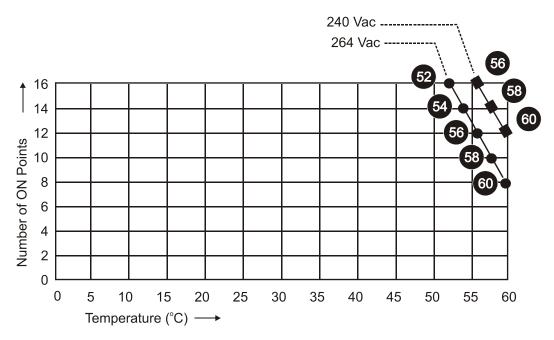


Figure 29 - AC Input Module de-Rating

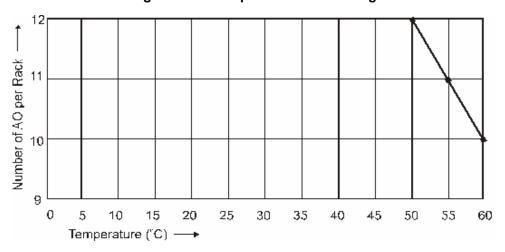


Figure 30 – Power Supply de-Rating

Cable/Wiring Distance Planning

For all installations observe the following guidelines.

- Maximum length of RS-232 cabling (Controller to PC) is 50 feet (15.2 meters).
- Maximum length of RS-485 cabling (Controller to Operator Interface) is 2000 feet (609.6 meters).
- For Ethernet connections, cable length must be less than 100m. For greater than 100m a switch is required. The use of Ethernet cables in excess of 100 meters and/or devices other than recommended Switches will cause transmission delays that could have adverse affects on Controller performance.
- You can also use fiber optic cable for connections between the controller and a remote rack. Distances up to 750m (2460 ft.) can be accomplished with one fiber cable. Distances up to 1500m (4920 ft.) are possible with a fiber switch used as a repeater at the midpoint. (See page 182)

- With redundant CPUs, when using 2 or more I/O racks an Ethernet switch is required between *each* CPU and the I/O racks. Use Honeywell-approved switches only. (see page 182)
- Maximum of 2switches between each CPU's I/O port and all I/O racks.
- Cable lengths specified in this manual are absolute. When planning for routing of cables and wires, be certain to include vertical and horizontal routing within cabinets, raceways, and conduits.
- It is advantageous to minimize length of I/O wiring. However, it is also a good idea to locate racks (and wiring) away from adverse environmental conditions such as sources of RFI, EMI, and away from areas with high levels of moisture, dust, and corrosive materials.

How to make Ethernet cables

Ethernet cable (shielded Cat 5) contains 4 twisted pairs of wires and a drain wire. Each pair consists of a solid color wire and a color wire with a white stripe.

1. Hold the cable ends and RJ45 connectors side by side as shown:

For straight through cable, arrange wires as shown in the following table. Wires go "straight through", no crossovers.

Straight-through cable assembly				
Cable left end	10Base-T / 100Base-T	Cable right end		
Left to right	Signal Description	Left to right		
Wire color/pin number		Wire color/pin number		
white/orange/1	Tx +	white/orange/1		
Orange/2	Tx -	Orange/2		
white/green/3	Rx +	white/green/3		
Blue/4	Unused	Blue/4		
white/blue/5	Unused	white/blue/5		
Green/6	Rx -	Green/6		
white/brown/7	Unused	white/brown/7		
Brown/8	Unused	Brown/8		

3. For crossover cable, arrange wires as shown in the following table. (TX and RX pairs are crossed.)

Crossover cable assembly				
Cable left end	10Base-T / 100Base-T	Cable right end		
Left to right	Signal Description	Left to right		
Wire color/pin number		Wire color/pin number		
white/orange/1	Tx +	white/green/1		
Orange/2	Tx -	Green/2		
white/green/3	Rx +	white/orange/3		
Blue/4	Unused	Blue/4		
white/blue/5	Unused	white/blue/5		
Green/6	Rx -	Orange/6		
white/brown/7	Unused	white/brown/7		
Brown/8	Unused	Brown/8		

4. Crimp an RJ45 connector to each cable end. To ensure reliability do not untwist the pairs any more than necessary to complete the crimp connection. Use care to ensure that the cable drain wire is securely connected to the shield of the RJ45 connector when the cable is crimped. Reference the manufacturer's instructions.

Electrical Considerations

All racks should be mounted in an appropriate metal enclosure. A diagram that shows recommended wiring practice for the cabinet enclosure is given in Figure 31 – Cabinet Wiring, Single Chassis, and Figure 32 – Cabinet Wiring, Multiple Chassis.

Deviations from the installation conditions specified in this manual may invalidate this product's conformity with Low Voltage and EMC Directives.

Hazardous voltages exist in the equipment enclosure.

Identify and avoid contact with voltage sources.

Failure to comply with these instructions could result in death or serious injury.

Controller Grounding

PROTECTIVE BONDING (grounding) of this controller and the enclosure in which it is installed shall be in accordance with National Electrical Code (ANSI/NFPA 70) and with local electrical codes.

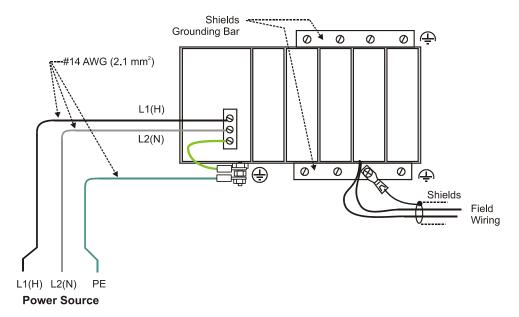


Figure 31 - Cabinet Wiring, Single Chassis

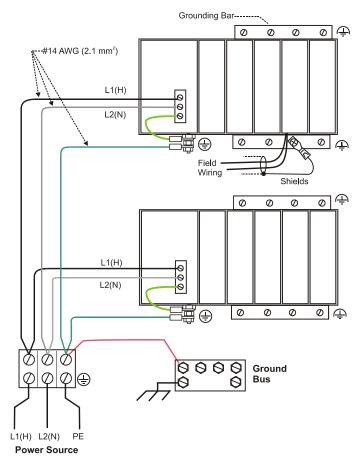
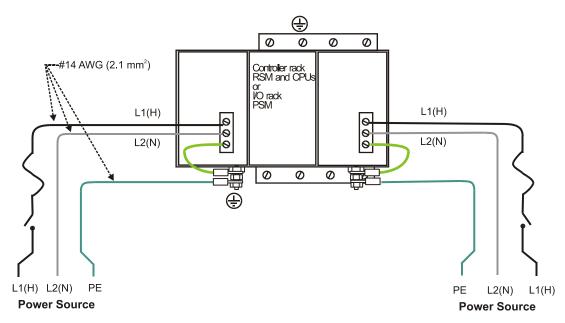



Figure 32 - Cabinet Wiring, Multiple Chassis

For P01 power supply use 3.0A, slow-blow for 115VAC operation; 2.5A, slow-blow for 230VAC operation. For P02 power supply, use 2.5A, slow-blow for 115VAC operation; 2.0A, slow-blow for 230VAC operation. For P24 power supply use 7.0A slow-blow.

Figure 33 – Redundant power supplies each with external fuse and switch

CE Conformity

Electrical noise produces undesirable effects in measurements and control circuits.

Digital equipment is especially sensitive to the effects of electrical noise. You should use the following methods to reduce these effects:

- Supplementary bonding of the controller enclosure to a local ground, using a No. 12 (4 mm²) copper conductor, is recommended. This may help minimize electrical noise and transients that may adversely affect the system.
- Separate external wiring group connecting wires into bundles (see Table 6) and route the individual bundles through separate conduits or metal trays.
- Use shielded twisted pair cables for all Analog I/O, Process Variable, RTD, Thermocouple, dc millivolt, low level signal, 4-20 mA, Digital I/O, and computer interface circuits. Ground shields as described in the section I/O Module Installation and Wiring page 63.
- Use suppression devices for additional noise protection. You may want to add suppression devices at the external source. Appropriate suppression devices are commercially available.
- Refer to document 51-52-05-01 *How to Apply Digital Instrumentation in Severe Electrical Noise Environments* for additional installation guidance.

Grouping Wires for Routing

Wires that carry relatively high electrical energy can produce unwanted noise in wires that transmit signals of relatively low energy, particularly when they are placed parallel in long wiring runs. Collect and bundle wires of similar type, and route the bundle separate from bundles of other types. Table 6 provides suggested guidelines for grouping wires.

Table 6 – Guidelines for Grouping Wires

Wire Group	Wire Functions		
High voltage	AC Line power wiring		
(>50 Vdc/Vac)	• Earth ground wiring		
	Control relay output wiring		
	Line voltage alarm wiring		
Signal	Analog signal wire, such as:		
(<15 Vdc)	 Input signal wire (thermocouple, 4 mA to 20 mA, etc.) 		
	4-20 mA output signal wiring		
	Slidewire feedback circuit wiring		
	Communications		
Low voltage	Low voltage alarm relay output wiring		
(<50 Vdc/Vac)	Low voltage wiring to solid state type control circuits		

Master Control Relay

A Master Control Relay (MCR) structure is a safety mechanism for shutting down the process control system in emergency conditions. This mechanism, which is hard-wired (provided and installed by the User) can include several Emergency Stop switches., strategically located near process equipment. An example of an MCR structure is given in Figure 34.

Operating any of the Emergency-Stop switches opens the holding path for the MCR. When the MCR de-energizes, the MCR contact opens, disconnecting all AC power that is supplied to AC Input Modules and to AC Output Modules. Notice that AC power is disconnected only from the AC input/output modules. Power is still available to Power Supplies at the Controller Rack and at each I/O expansion rack. The Controller Module and the Scanner Modules in the racks continue to execute diagnostics and other programs.

The Master Control Relay does not remove power from the Controller rack or from any of the I/O expansion racks.

- Before performing service tasks such as installation of terminal connections or fuse replacement, use the appropriate switch(s) to disconnect power from the power supply at each module.
- Ensure that wiring design precludes over-riding of the MCR by operator actions.

Failure to comply with these instructions could result in death or serious injury.

Class 1. Division 2 Installations

DO NOT REMOVE OR REPLACE MODULES WHILE CIRCUIT IS LIVE UNLESS THE AREA IS KNOWN NOT TO CONTAIN FLAMMABLE VAPORS.



Figure 34 - Master Control Relay Wiring Example

System Monitor Function Blocks

The HC900 Controller includes function blocks that enable the user to monitor the status of system functions. When constructing a control configuration, consider adding the following monitoring function blocks to the control strategy:

- ASYS System Monitor
- FSYS Fast System Monitor
- RK Rack Monitor

These function blocks are described in the HC900 Function Block Reference Guide #51-52-25-109.

Rack Installation

Overview

This section contains procedures for installing one or more HC900 Controllers. It is recommended that the information in this section be reviewed before beginning the installation. Familiarity with the overall procedure will help to prevent errors and will promote efficiency in general.

Tools Required

The primary tools required during installation are listed in Table 7.

Table 7 - Installation Tools

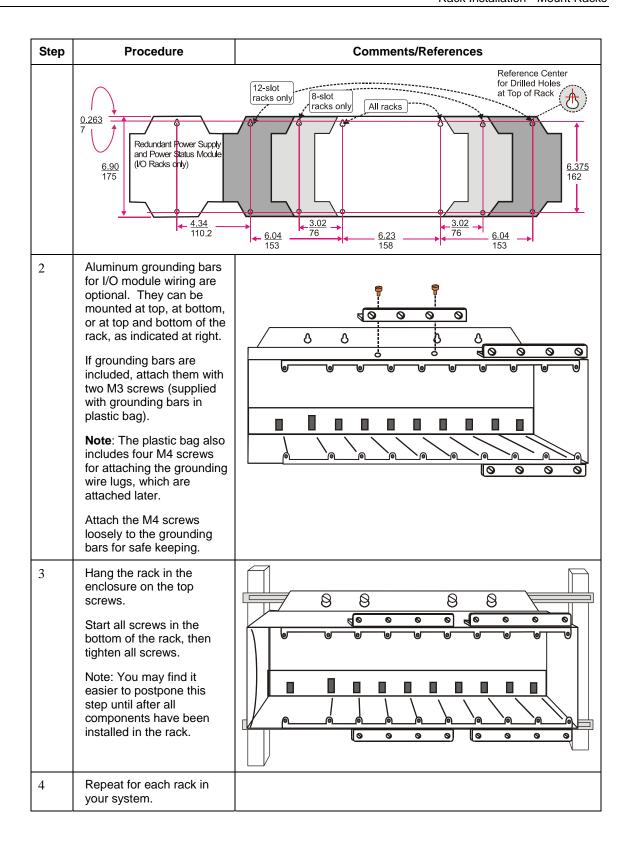
Item	Description	Comments
	Common tools	
1	Wire strippers	For Power Supply and for I/O Wiring
2	• Crimper	For Terminal Lugs on Power Supply wiring and on I/O wiring shields
	Screwdrivers	
3	Small flat-tip	For Euro-style Terminal Blocks
4	Small/medium flat-tip or Phillips	For Barrier style Terminal blocks); also for captured screws in Terminal Blocks
5	Large (long blade)	For use as I/O Module extractor
	Other	
6	 Electric drill, with drill bits for #10 or M4 screws, and with drill-bit extender 	For rack mounting
7	Vacuum cleaner, brush	For use during and after drilling operations
8	 Pen, ball-point or felt-tip, for entering data on labels for I/O modules) 	For entering data on labels for I/O modules
9	Multi-Meter (Volt/Ohms/Amps)	For safety checks and for equipment test
10	 Soldering pencil or gun (for attaching filter capacitors to I/O wiring shields) 	For attaching filter capacitors on I/O wiring shields
	Special tools	
11	Precision meters	(If required) for testing Analog calibration; refer to Analog Calibration in this manual.

Equipment Preparation

A checklist for site preparation is given in Table 8.

Table 8 – Site and Equipment Preparation

	Table 8 – Site and Equipment Preparation				
Step	Procedure	Reference			
1	Verify that sufficient numbers of the following items are on hand:	Section on Pre-Installation Planning.			
	• Racks (4-, 8- and 12-slot)	Sections on installation			
	Power Supplies: 1 per rack				
	 C30/C50/C70 Controller Module or Scanner 1 port (1 per rack) 				
	Redundancy:				
	 Each Controller Rack: 2 Power Supplies, 2 C70R CPUs, 1 Redundancy Switch Module. 				
	 Each I/O Rack: 1 Scanner dual-port module, 1 Power Supply, 1 reserve Power Supply (optional), 1 Power Status Module (optional) 				
	I/O Modules (correct type for each configured slot)				
	 Terminal Blocks, Barrier or Euro style, (1 for each I/O Module) 				
	 Jumpers 2-position or 10-position, (for designated Terminal Blocks) 				
	Tie Wraps (1 or 2 for each Terminal Block)				
	I/O Label (one per terminal block, by module type)				
	 Filler Block Cover (1 for each slot not occupied by an I/O Module) 				
	Blank label (1 for each Filler Block Cover)				
	 Grounding Bars for I/O wiring shields (1 or 2 for each 4-slots in each rack) 				
	 Wiring terminal lugs (for connecting I/O shields to grounding bars) 				
	 Sheet metal screws, steel #10 or M4, for mounting racks in enclosures (4 screws for 4-slot racks, 8 screws for 8- or 12-slot racks) 				
2	Install (or verify correct installation of) enclosures for HC900 Controllers and ancillary equipment:	Mount Racks Table 9 – Mount Rack			
	Mounting rails or flat-panels	Table o Mount Hack			
	(for cabinet with multiple HC900 Chassis):				
	 grounding bus 				
	 barrier strip for AC power 				
	Master control Relay				

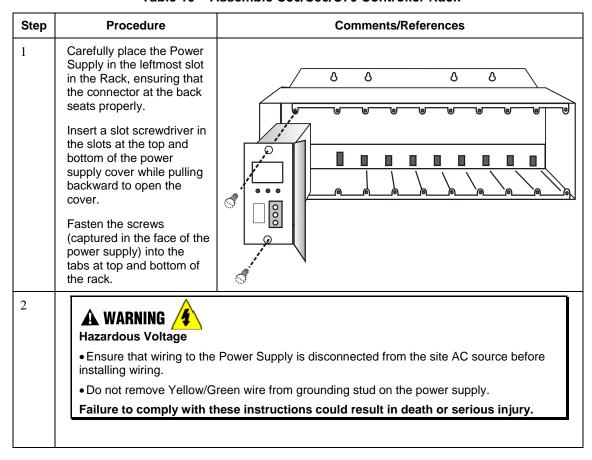

Step	Procedure	Reference
3	Install (or verify correct installation of) enclosures ("closets") for networking devices:	See Pre-installation planning sections.
		Note: Some networking devices may share enclosures with HC900 Controller components.
4	Install (or verify correct installation of):	See I/O Module Installation
	External disconnect switches	and Wiring on page 63.
	• Fuses	
	at the power source associated with input sensor or output devices for I/O modules.	
5	Arrange and organize items to be installed at or near enclosures.	

Mount Racks

Rack assembly information is given in Table 9.

Table 9 - Mount Racks

Step	Procedure	Comments/References
1	Mount the Rack in the enclosure as follows.	For dimensions of the pattern for drilling holes, refer to the diagram below.
	Using the diagrams below as a guide, mark the locations for rack mounting in the enclosure for the top holes in the rack.	
	(See CAUTION and Note at right.)	
	Drill and tap for # 10 (or M4) screws.	
	Start the mounting screws (supplied by the user) in the drilled holes.	
	Hang the Rack on the screws at the top.	CAUTION When drilling holes, prevent metal flakes from falling into the rack, or onto any surface within
	Mark the locations for the bottom screws.	the electrical cabinet.
	(See CAUTION at right.)	Note: Always mount racks as shown above. That is, never mount vertically, or with backplane horizontal.
	Drill and tap for # 10 (or M4) screws.	
	Remove the rack from the enclosure.	



Assemble Controller Rack

C30/C50/C70 Controller Rack assembly information is given in Table 10.

C70R Controller Rack assembly information is given in Table 11.

Table 10 - Assemble C30/C50/C70 Controller Rack

Step	Procedure	Comments/References
2	Ensure that wiring to the Power Supply is disconnected from the site source, and then connect AC wiring to the power supply as shown at right. Note: The Yellow/Green	ATTENTION! Do not connect PE Ground (Green) Wire directly to terminal on Power Supply.
	wire is supplied with the power supply. The nuts (w/star washers) for the grounding stud are on the stud. The power supply has an internal fuse that is not replaceable. A second external fuse may be added if desired. For P01 power supply use 3.0A, slow-blow for 115VAC operation; 2.5A, slow-blow for 230VAC operation. For P02 power supply, use 2.5A, slow-blow for 115VAC operation; 2.0A, slow-blow for 230VAC operation. For P24 power supply use 7.0A slow-blow. CAUTION The P24 is a +24V DC	#14 AWG (2.1 mm²) Copper, 75° C Blue White (Eure) (USA)
Power su applying a any kind t	Power supply and that applying AC voltages of any kind to this power supply will destroy it.	
	Apply power. For P01 only, test voltages at the test points provided on the face of the Power Supply.	
	Note: Test-points are electrically connected to the backplane of the rack. If the power supply is not properly seated in the backplane connectors, no voltage will be measured at the test points.	

Step	Procedure	Comments/References
3	Ensure that AC power to the rack is disconnected. Set controller module's communication ports to desired settings (page 32). Carefully place the Controller Module in the rack, immediately to the right of the Power Supply. Fasten it in place with two captured screws at top and bottom. ATTENTION: Do not install the battery at this time. Installing the battery before the controller is configured can substantially shorten battery life. Install under power after the controller configuration is complete. (For more information, refer to Battery Installation/Replacement, page 169.)	
4	I/O will be installed later.	See Page 63.

Table 11 - Assemble C70R Controller Rack

Step	Procedure	Comments/Reference	ces
1	Carefully place the Power Supplies in the leftmost and rightmost slots in the Rack, ensuring that the connector at the back seats properly. See Table 10 steps 1 and 2 for power supply wiring details.	Honeywell Honeywell	() Honeywell
2	Set controller communication ports.	See page 32.	

Step	Procedure	Comments/References
3	Ensure that AC power to the rack is disconnected. Carefully place the Controller Modules in the rack, adjacent to the Power Supplies. Fasten them in place with captured screws at top and bottom.	See figure in step 1.
	ATTENTION:	
	The CPU battery comes installed with a plastic tab protruding from the battery cover. This tab breaks the battery circuit. Do not remove this tab at this time. Removing the tab before the controller is configured can substantially shorten battery life. Remove the tab under power after the controller configuration is complete.	
	(For more information, refer to Battery Installation/Replacement, page 169.)	
4	Insert the RSM in the middle slot and attach with screws at top and bottom.	See figure in step 1.

Assemble I/O Expansion Racks

I/O Expansion Rack assembly information is given in Table 12.

Table 12 - Assemble I/O Expansion Racks

Step	Procedure	Comments/References
1	Insert power supply into left-most slot in the I/O rack. See Table 10 steps 1 and 2 for wiring details.	If using redundant power, your I/O rack will contain a second smaller compartment, see 1 in figure below. Insert first power supply in the larger compartment as shown, to the immediate right of the plate dividing the two compartments.
2	Redundant Power (optional): Insert the second power supply in the left side of the smaller compartment, see 1 in figure above. See Table 10 steps 1 and 2 for details. Insert the PSM between the 2 power supplies. Fasten it in place with screws at top and bottom.	See 1 in figure above. See Table 10 steps 1 and 2 for details.

Step	Procedure	Comments/References
3	Set scanner address for the I/O rack using the Scanner Module DIP switches on SW3 (shown at right). For C50/C70, use address 1-4. For C70R, use address 1-5. DIP switches 6-8 must be OFF. Only one DIP switch may be ON: DIP switch 1 ON = Scanner 1 DIP switch 2 ON = Scanner 2 DIP switch 3 ON = Scanner 3 DIP switch 4 ON = Scanner 4 DIP switch 5 ON = Scanner 5 A small slotted screwdriver or paperclip works well; avoid pencils.	Honeywell SW3 SV3 SV3 SV3 SV3 SV3 SV3 SV3 SV3 SV3 SV
4	Repeat steps 1 through 3 for each I/O expansion rack. Then, for each I/O expansion rack, insert the Scanner Module immediately to the right of the Power Supply, and secure it in place with the two captured screws in the faceplate.	
5	I/O will be installed later.	See Page 63.

I/O Module Installation and Wiring

Overview

This section contains descriptions of and procedures for installing I/O Modules in controller racks (all CPU models) and in I/O expansion racks (C50, C70, C70R CPU only).

Module Placement in Racks

Each input or output module is placed in an I/O slot in a rack as shown in Figure 35.

Each "slot" in a rack includes a set of guides that locate the circuit board in the rack and a 20-pin (4 x 5) socket in the backplane that receives the associated 4 x 5-pin plug at the back of the I/O module.

At the front of each I/O module, a 20 or 36 pin plug receives the associated socket on the back of a terminal block. When the I/O module is inserted into the rack and the terminal block is placed on the circuit board, two captured screws in the terminal block are fastened to metal tabs on the rack.

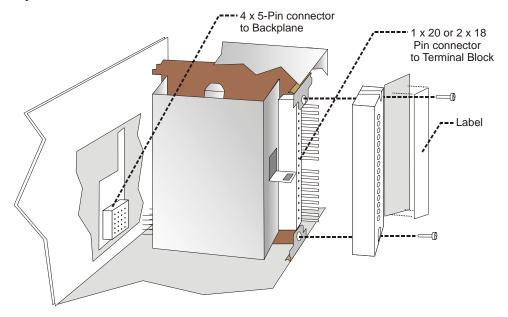


Figure 35 – I/O Module Installation

🛕 WARNING 👍

- Do not use an input/output terminal block if the terminal block is damaged, if the door is missing, or if one or both mounting screws are missing.
- Always tighten both terminal block screws before applying field power to the module.
- Do not apply energized ("live") field wiring to an input/output module that is not installed in one of the racks in the HC900 Controller.
- Do not operate the controller without a Protective Earth connection.

Terminal Block Styles

The terminal block is available in the barrier style, shown at left in Figure 36, and the Euro style, shown at right. Not shown: a Euro style with 36 connections is also available for certain high capacity modules.

Terminal blocks have an embossed numbering "key" that shows the numbering pattern of the 20/36 connections.

The frame associated with the terminal block has a transparent hinged door. The hinged door is a tool secured cover. To open the door, insert a flat screwdriver into the slot at the top and bottom of the door while pulling out. The door has molded-in tabs that hold labels, which are uniquely color-coded to identify each module type.

Each label is printed on both sides. On the front (visible when the door is closed) are I/O channel numbers, with spaces in which tag names can be written. On the back (visible when the door is open) are wiring patterns for the type of module located in the slot.

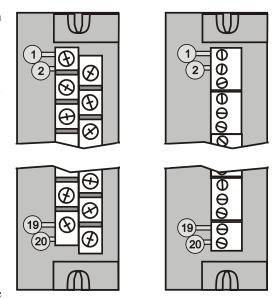


Figure 36 - Terminal Block Styles

The 20-pin, inline connectors at the back of the terminal blocks are universal; that is, any type of I/O module can be used with either the Barrier style or the Euro style terminal block. The 36-pin Euro terminal blocks must be used with High Level AI, 32 DI, and 32 DO modules.

ATTENTION

Before mounting terminal blocks in the rack, be sure they are properly keyed to the module type they will be used with. See I/O Module Installation Procedures, page 69.

Terminal Block Colors and Keying

Both the barrier style and the Euro style are available in two colors (red and black). Black terminal blocks, which have gold contacts, are used for low-voltage, low-energy signals such as contact inputs and low DC voltages. Red terminal blocks, which have tin contacts, are used for higher voltages such as 120/240 Vac.

Colors of each Terminal Blocks must correlate to that of the mating header on I/O modules with which they are used; that is:

- Black terminal blocks, which have gold contacts, are for use with I/O modules that have black headers
 and gold pins in the 20-pin connector; these include: Analog Input, Analog Output, DC Input, DC
 Output, Contact Input, Pulse Input, Pulse Output, Frequency Input, Quadrature Input.
- Red terminal blocks, which have white (tin) contacts, are for use with I/O modules that have red headers and white- (tin-) contacts in the 20-pin connector; these include: AC Input, AC Output, and Relay Output.
- 36-pin black Euro terminal blocks, which have gold contacts, are for use with 16-point AI, 32-point DI, and 32-point DO modules.
- Terminal blocks may be keyed by the installer to prevent high voltage terminal blocks from being installed on low voltage modules. See Table 15.
- Any of the color-coded labels will fit into the door of any terminal block. Use care to ensure that all hardware components match each other, and also match the control strategy in the configuration file.

Remote Termination Panel (RTP)

The optional Remote Termination Panel (RTP) provides an easy way to connect the HC900 controller to the field wiring. The RTP integrates some of the typical externally connected components, reducing wiring and setup time. It also minimizes the need for multiple wires under a single screw connection by expanding the connectivity of the shared terminals of the I/O modules.

See Appendix - Installation of Remote Termination Panels (RTPs) page 185 for details.

Terminal Block-to-Field (Signal) Wiring

Although both of the two available terminal block styles can be used on all I/O module types, wiring methods vary with the module type and with the type of field devices connected to the terminal block. The descriptions that follow provide details.

Wiring can be routed through the terminal block at the top, at the bottom, or both. Wiring should be fixed in place using wire ties at the slotted tabs that are molded in at top and bottom of each terminal block.

Wiring Rules and Recommendations

In general, stranded copper wire should be used for non-thermocouple electrical connections. Twisted-pair wiring with shielded cable will improve noise immunity if wire routing is suspect.

Wire Gage

Observe all local codes when making power connections. Unless local electrical codes dictate otherwise, the recommended minimum wire size for connections is given in Table 13.

Wire Gauge	Wire Application
14	Earth ground to common power supply.
14 to 16	AC to power supply
10 to 14	Earth ground wire
20	DC current and voltage field wiring
22	DC current and voltage wiring in control room

Table 13 - Minimum Recommended Wire Sizes

Routing and Securing Wires

Typically, field wiring is routed to connections at a terminal panel near the controller and then from the terminal panel to the terminal blocks on the I/O modules.

Whatever method of routing is used, wiring must be mechanically supported along its length, and must be protected from physical damage and electromagnetic (noise) interference. (See Electrical Considerations page 44.)

Also, all wires must be securely terminated, using appropriate wiring practices.

Signal Grounding (Figure 37)

The shield for each input should be grounded at the grounding bar (optional) at the top or bottom of each rack as indicated in Figure 38. For low-frequency noise rejection, I/O wiring shields should be grounded only at the controller end.

For high-frequency noise rejection, shields should be grounded at the controller and at the field device. If the ground voltage potential at the field device is different from that at the controller, a DC isolation capacitor should be used between the shield and the grounding bar on the rack.

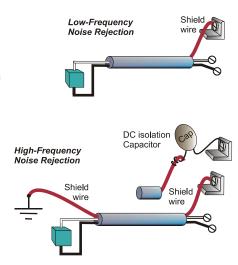


Figure 37 - Signal-Wire Grounding

Aluminum grounding bars for I/O wiring are available as options. When selected for use, they are fastened to the top and/or bottom of each rack, as indicated in Figure 38. To enable connection of multiple ground wires with a single screw, the wires can be twisted together and secured with a wire lug.

To facilitate module replacement, it is advisable in most cases to route all wiring through either the top or

the bottom of the terminal block. This allows the terminal block to pivot up or down, allowing ready access to the module, and is the preferred method for a limited number of wires.

For a larger number of wires, or for wires of a heavier gauge, it is advisable to route some wires through the top of the terminal block, and some through the bottom, as indicated in Figure 38. In this case, it is necessary to adjust wire length so as to ensure adequate flexibility of the twisted wires and to provide clearance sufficient to remove the I/O module.

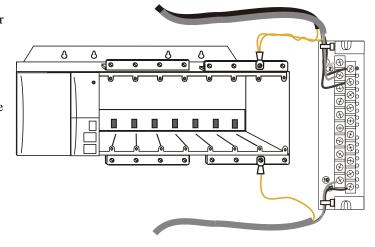


Figure 38 – Wire-Shield Grounding

Terminal Block Jumper Combs

Two styles of terminal block jumper combs are available for use with the barrier-style terminal blocks: tenposition and two position. (Figure 39)

The ten-position jumpers are used with AC output modules to inter-connect L1 (AC Hot) of all channels.

The two-position jumpers are used to connect Common (DC negative or AC neutral) for the DC input module, the DC Output Module, and the AC Input Module. Each of these module types has groups of eight channels, with the two groups isolated from each other. The two-position jumper connects (Common) terminals 10 and 12, making one group of sixteen non-isolated channels.

The two-position jumper can also be used to connect the V+ terminals on the DC Output Module.

Refer to the wiring information on each module, given in this section of this manual.

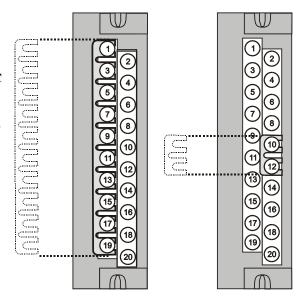


Figure 39 - Terminal Block Jumper Installation

Removal and Insertion Under Power (RIUP)

A WARNING

Read and understand all of the following information regarding RIUP before attempting to remove and/or replace any I/O module, particularly in a system that is actively controlling a process.

All of the I/O Module types in the HC900 Controller System include the Removal and Insertion Under Power (RIUP) feature. That is, while the rack is powered, any of the I/O Modules can be removed or inserted:

- With no physical damage to the module, to the rack, or to other modules in the rack
- Without disturbing the functions of *other I/O modules* in the rack or in the system.

Under carefully controlled circumstances, this feature enables the user to remove and insert an I/O module without completely shutting down a running system. However, it must be recognized that removing or inserting an I/O module under power is potentially hazardous to property and to personnel.

Circumstances that dictate prudent actions depend on conditions and specific process applications at each user facility. It is the responsibility of site personnel to know all potential consequences of RIUP, and to take actions to prevent all adverse consequences before removing or inserting an I/O module under power. Table 14 provides some general guidelines for establishing appropriate procedures at a given installation.

Table 14 - RIUP: Potential Hazards and Recommended Actions

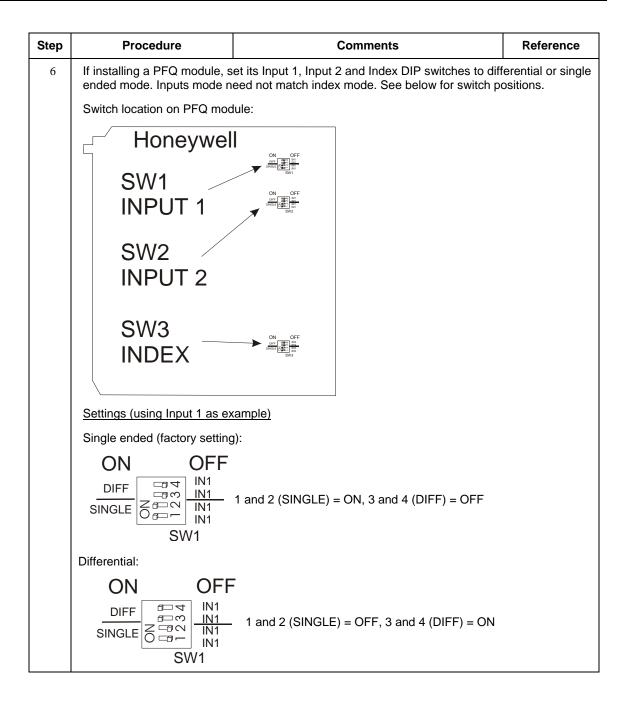
Hazard	Source	Preventive Action(s)		
WARNING Hazardous Voltages	Potentially lethal voltages on Terminal Boards associated with I/O Modules.	Disconnect all signals at terminal blocks from sources of power before removing the terminal block from the I/O module.		
A CAUTION Loss of control or view of a running process	Each signal at each of the terminals for an I/O module has a specific function. Any or all of the signals may be vital for safely controlling a process.	Either: Using trained personnel and appropriate control mechanisms, transfer to manual control for each signal that is necessary to maintain safe process control. Or:		
		Bring the process to a safe stop before initiating the removal or insertion procedure.		

EXPLOSION HAZARD

Class 1, Division 2 Installations

• DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN SWITCHED OFF OR THE AREA IS KNOWN TO BE NON-HAZARDOUS.

I/O Module Installation Procedures


Table 15 - Connect Input/Output Wiring

Barrier style Terminal Blocks, to reduce the wiring required to supply power: Two-position jumper for the DC Input Module and/or on the DC Output Module. Ten-position jumper for the AC Output Module.	Step	Procedure	Comments	Reference
supplied with the module (tagname side out) into the hinged door for each I/O Module. Slotted tabs, molded into the door at top and bottom, hold the label in place. 3 (Optional): Install jumper combs into designated Barrier style Terminal Blocks, to reduce the wiring required to supply power: Two-position jumper for the DC Input Module and/or on the DC Output Module. Ten-position jumper for the AC Output Module.	1	Channel # data from a Hybrid Control Designer report, fill in the tagnames on the Label for each configured I/O Module. Module slot position should take heat de-rating into account. See Heat Rise De-rating page 41. Be sure to use the appropriate label for each	Select Label	WHITE TEXT) WHITE TEXT) TE TEXT) JE, WHITE TEXT) TE TEXT) ARK GREY TEXT)
Coptional). Install jumper combs into designated Barrier style Terminal Blocks, to reduce the wiring required to supply power: Two-position jumper for the DC Input Module and/or on the DC Output Module. Ten-position jumper for the AC Output Module.	2	supplied with the module (tagname side out) into the hinged door for each I/O Module. Slotted tabs, molded into the door at top and bottom, hold the label in	DE-ENERGIZE MODULE FIELD POWER BEFORE SERVICING Term. No. IN1+ 1 IN1- 2 IRTD1-2 3 IN2+ 4 IN2- 5	
	3	combs into designated Barrier style Terminal Blocks, to reduce the wiring required to supply power: Two-position jumper for the DC Input Module and/or on the DC Output Module. Ten-position jumper for the AC Output Module. Five-position jumper (10- position jumper cut in half) for a Relay Output	AC Output DC Input DC Output OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	(T) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C

Step	Procedure	Comments	Reference
4	For each configured and labeled I/O Module, break off the "key-tabs" in the pattern that identifies each module type. (For a diagram of each key-tab pattern, use the I/O Modules and/or the diagram shown next page.	Ta for	cample: bs Removed AC Output odule

Step	Procedure			Coi	mments	i			Reference		
4 cont'd	NOTE: In the diagram below, the white cut-outs represent the cut-outs on the modules that accommodate tabs on the Terminal Block. That is, all key-tabs that line up with the white cut-outs on the diagram should be retained, and all other tabs should be removed.										
	The orientation of the the previous picture.	The orientation of the diagrams below corresponds to the picture of the terminal block, shown in the previous picture.									
			Diagran	ns for l	O Mo	dule Ke	y-Tabs	i			
	120/240Vac IN	120/240Vac IN 120/240Vac OUT 24Vdc OUT 32 DO Contact IN 24 VdcIN 32DI Analog IN 16AI Analog OUT									

Step **Procedure** Comments Reference 5 If installing High Level 16 channel Analog Input module, set its SW1 and SW2 DIP switches. • For voltage mode, set all 16 switches to OFF (default, shown in figure). • For current mode, set all 16 switches to ON. This connects an internal 250 ohm resistor. A small slotted screwdriver or paperclip works well; avoid using pencils. Honeywell $\square \infty$ **9 4** $\Box \circ$ \square

Step	Procedure	Comments	Reference
7	Using the following reference items: Hybrid Control Designer data Labels in I/O Terminal Block assemblies Wiring diagrams given in this Section for each type of I/O module connect I/O wiring to the terminal blocks for each IO module. Route wires through the channel at left of the terminal block, to exit through the top or bottom of the block.	Euro Terminal Block	
8	Insert a wire-tie into the top and/or bottom end of the terminal block. Form a bend in each wire to provide strain relief, and secure the wire bundle with the tie.		

Step	Procedure	Comments	Reference
9	Connect wire shield to grounding bars on top and/or bottom of the Rack. (Refer to Signal Grounding, at the beginning of this section, for suggestions and recommendations.)		
10	Install I/O modules in racks. Be sure to follow placement guidelines under Heat Rise De-rating page 41.		
11	In each slot location not occupied by an I/O module, install a Filler Block cover, Part number 900TNF-0001.	Note: The Filler Block Cover looks much like an Block assembly, except that it does not include the terminating block (screw terminals). The Filler B the same manner as a Terminal Block (with capt top and bottom). Blank labels are provided for minged door.	he wire lock mounts in ured screws at

I/O Terminal Block Wiring Diagrams

Universal Analog Input Module Wiring

The Universal Analog Input Module has eight inputs, which can include any combination of the following input types: RTD, TC, Ohms, Millivolt, Volt, or Milliamp. Figure 41 shows wiring examples of each of the analog input types. An example of wiring for eight TC inputs is given in Figure 43.

Specifications for this module and for other modules are given in the Specifications section of this manual.

ATTENTION

To indicate sensor failure the Analog Input software will output a warning if thermocouple resistance > 80 ohms. Use appropriate gauge wiring to prevent inaccurate failure warnings.

Table 16 – Typical Thermocouple resistance in Ohms per Double Foot @ 68 degrees F

AWG No.	Diameter inches	Туре К	Туре Ј	Туре Т	Type E	Type S Pt/ PT110	Type R Pt/ PT113	Type W5/ W26	Type W/ W26
10	0.102	0.058	0.034	0.029	0.069	0.018	0.018	0.023	0.020
12	0.081	0.091	0.054	0.046	0.109	0.028	0.029	0.037	0.031
14	0.064	0.146	0.087	0.074	0.175	0.045	0.047	0.058	0.049
16	0.051	0.230	0.137	0.117	0.276	0.071	0.073	0.092	0.078
18	0.040	0.374	0.222	0.190	0.448	0.116	0.119	0.148	0.126
20	0.032	0.586	0.357	0.298	0.707	0.185	0.190	0.235	0.200
24	0.0201	1.490	0.878	0.7526	1.78	0.464	0.478	0.594	0.560
26	0.0159	2.381	1.405	1.204	2.836	0.740	0.760	0.945	0.803
30	0.0100	5.984	3.551	3.043	7.169	1.85	1.91	2.38	2.03
	Table values are shown as a reference only; actual values may vary. Consult manufacturer specifications.								S.

Isolation

This module has eight inputs, which are isolated except for RTD current sources.

RTD Inputs

RTD inputs share current sources (two RTD inputs per source), as shown in Figure 40, Figure 41, and Figure 42.

For example, the current source for the RTD input at channel one (terminals 1 and 2) is terminal 3 (I_{RTD} 1 & 2). This same current source (I_{RTD} 1 & 2) is also used for an RTD input at channel two (terminals 4 and 5).

Figure 40 and Figure 44 show examples of RTD input wiring (2-wire and 3-wire RTDs). Four-wire RTD inputs are not available.

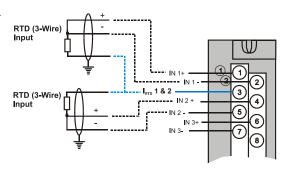


Figure 40 - RTD Inputs

OHMs Inputs

Ohms inputs are wired similar to 2-wire RTD inputs. That is, they require a current source, and thus must use one of the I_{RTD} current sources. Also, two terminals are jumpered together as they are for two-wire RTD inputs.

Analog channels wired for Ohms inputs differ from RTD inputs in these aspects:

- Ohms inputs connect to variable resistance devices other than RTDs, and
- Ohms inputs are configured in Hybrid Control Designer as Ohms inputs, rather than as RTD inputs. Examples of wiring for resistance inputs are given in Figure 44.

Shield Grounding

Shields must be grounded as described under Shield Grounding at the beginning of this section.

Hazardous voltages exist at terminal blocks.

Using switches at field devices, disconnect the field wiring from power sources before servicing.

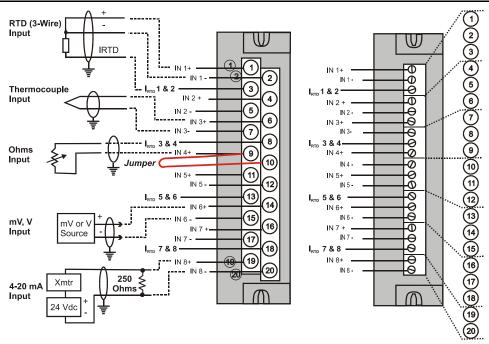


Figure 41 – Universal Analog Input Wiring Diagram

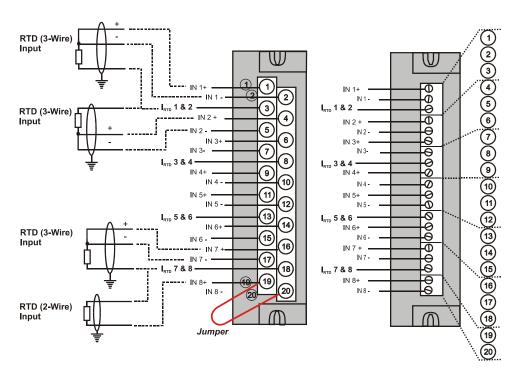


Figure 42 - Examples of RTD Input Wiring

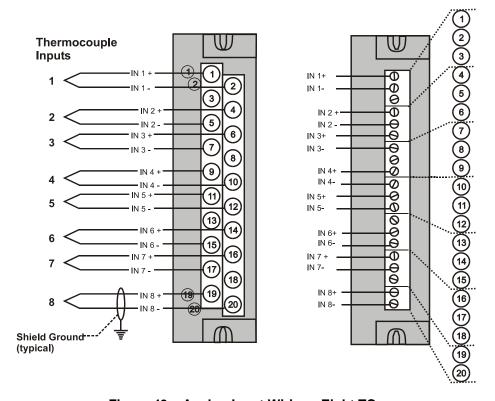


Figure 43 - Analog Input Wiring - Eight TCs

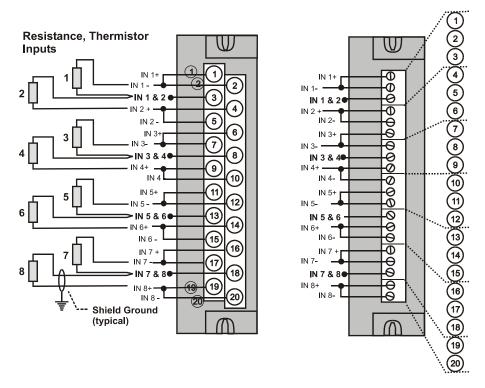


Figure 44 - Analog Input Wiring - Eight Resistance Inputs

Resistance Temperature Device Inputs

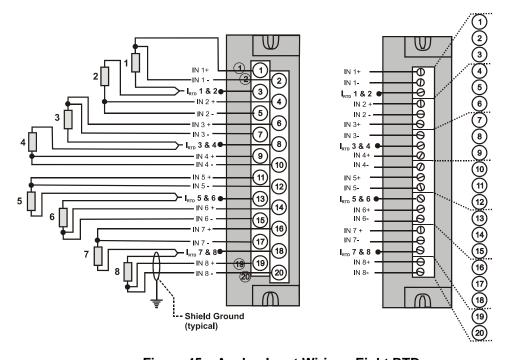


Figure 45 – Analog Input Wiring - Eight RTDs

Slidewires IN 1+ 99 IN 1-I_{RTD} 1 & 2 I_{RTD} 1 & 2 ● · IN 2 + Φ IN 2 + ğφ IN 2 -IN 2 - -IN 3 + IN 3+ IN 3 -0 IN 3-I_{RTD} 3 & 4 8 99 I_{RTD} 3 & 4 ● IN 4 + IN 4 -IN 4+ 10) IN 4-Ø <u>ŏ</u> IN 5 + IN 5+ 12) IN 5 -IN 5-I_{RTD} 5 & 6 ● I_{RTD} 5 & 6 0 ρφ IN 6 + IN 6+ IN 6-IN 6 -16) IN 7 + Φ IN 7 + IN 7-0 IN 7 -18) I_{RTD} 7 & 8 • ē. I_{RTD} 7 & 8 j Po IN 8 + 19 IN 8+ IN 8-IN 8 -

Figure 46 - Analog Input Wiring - Slidewire (Position Proportion Block)

16 point High Level Analog Input Wiring (Figure 47)

Be sure to set the module DIP switches for voltage or current mode. See page 72.

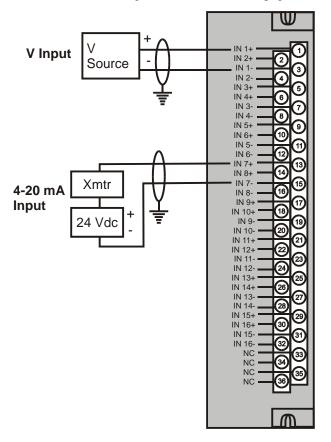


Figure 47 – 16 point High Level Analog Input Wiring

Analog Output Module Wiring

An example of Analog Output Module wiring is shown in Figure 48. Specifications for this module and for other modules are given in the Specifications section of this manual.

Isolation

The four outputs are isolated from each other.

Shield Grounding

Shields must be grounded as described under Shield Grounding at the beginning of this section.

Hazardous voltages exist at terminal blocks.

Using switches at field devices, disconnect the field wiring form power sources before servicing.

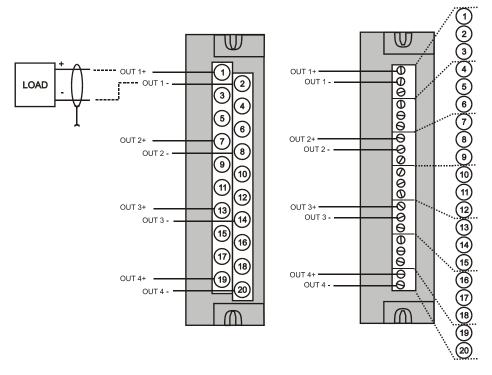


Figure 48 – Analog Output Wiring Diagram

DC Input Module Wiring

The DC Input Module has sixteen inputs, in two groups of eight inputs per group. The groups are isolated from each other; inputs are non-isolated within each group. An example of Digital Input Module wiring is shown in Figure 49. Specifications for this module and for other modules are given in the Specifications section of this manual.

Shield Grounding

Shields must be grounded as described under Shield Grounding at the beginning of this section.

Common Terminals

Two common terminals are provided for each group of eight inputs. Terminals 9 and 10 are connected in the input module, and terminals 11 and 12 are connected in the module.

Jumper Comb

A two-position jumper comb is available (as an option, for barrier-style terminal blocks only) for connecting digital common wiring (at terminals 9 and 11 *or* 10 and 12). See Figure 50.

Hazardous voltages exist at terminal blocks.

Using switches at field devices, disconnect the field wiring from power sources before servicing.

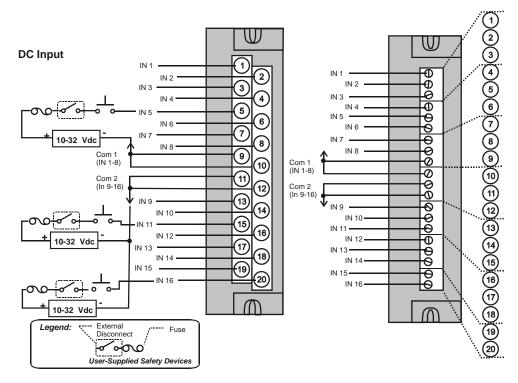


Figure 49 – DC Input Module Wiring Diagram

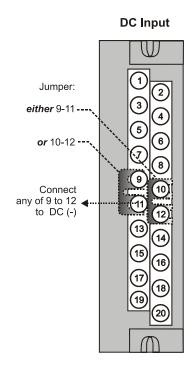


Figure 50 – DC Input Module Jumper

32 point DC Input Module Wiring

The 32-point DC Digital Input module (Figure 51) provides two groups of 16 inputs, each with a pair of terminals for connection to common. DC power applied between the common terminal and an input cause the input to turn ON. A green LED on the module provides indication of an ON state. Logic in the controller allows the state to be inverted when necessary.

Requires Low Voltage Euro style 36-terminal terminal block.

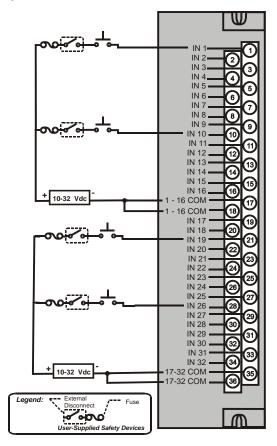


Figure 51 - 32 point DC Input Module Wiring

AC Input Module Wiring

The AC Input Module has sixteen inputs. An example of AC Input Module wiring is shown in Figure 52. Specifications for this module and for other modules are given in the Specifications section of this manual.

Common Terminals

Two common terminals are provided for each group of eight inputs. Terminals 9 and 10 are connected in the input module, and terminals 11 and 12 are connected in the module.

Jumper Comb

An optional two-position jumper comb is available as an option (for barrier style terminal blocks only) for connecting digital common wiring at terminals 9 and 11 *or* terminals 10 and 12. See Figure 53.

🛕 WARNING 🥖

Hazardous voltages exist at terminal blocks.

Using switches at field devices, disconnect the field wiring from power sources before servicing.

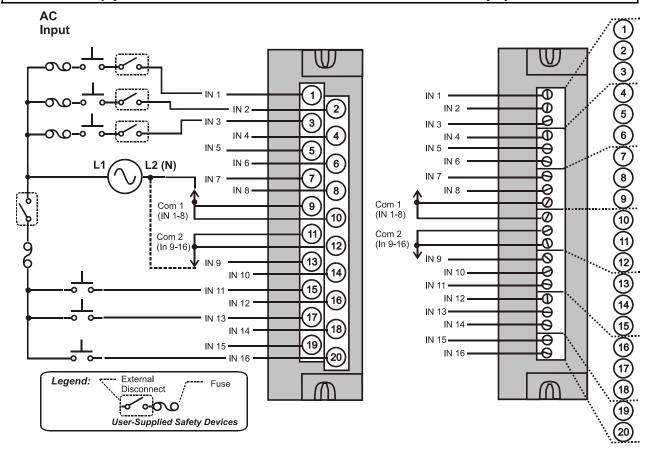


Figure 52 - AC Input Module Wiring Diagram

Jumper: either 10-12--or 9-11 --Connect any of 9-12 to L2 /N Connect any of 9-12 11 12 13 14 15 16 16 17 18 19 20

Figure 53 – AC Input Module Jumper

Contact Input Module Wiring

The Contact Input Module has sixteen inputs in one group. An example of Contact Input wiring is shown in Figure 54.

Specifications for the Contact Input Module and other modules are given in the Specifications section of this manual.

Internally Powered Input Channels

The Contact Input Module provides voltage to the field contacts.

CAUTION

Do not apply any external power to the field device or to the input terminals. Doing so could damage the module.

Common terminals

Four common terminals are provided for the 16 inputs. Terminals 9, 10, 11, and 12 are connected in the Contact Input module.

Hazardous voltages exist at terminal blocks.

• Using switches at field devices, disconnect the field wiring from power sources before servicing. Failure to comply with these instructions could result in death or serious injury.

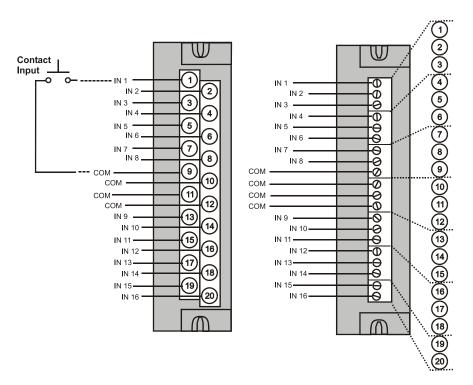


Figure 54 - Contact Input Wiring Diagram

DC Output Module Wiring

The DC Output Module provides 16 current-sinking outputs in two groups of eight points per group. The two groups are isolated from each other; outputs are non-isolated within each group. Current sinking means that a positive voltage potential is continuously applied to one side of each DC output load, and the negative side of the load is switched internally in the module.

Specifications for this module and for other modules are given in the Specifications section of this manual. Examples of DC Output wiring are shown in Figure 55 - DC Output Module Wiring Diagram

Over-Current Protection

Electronic high-current and high-temperature limiting provides overload protection; resets after cycling power. Conventional external fuses may be used if desired.

Reverse-Polarity Protection

A potential of \pm 34 Volts will cause no damage to the module; a reverse polarity power supply connection allows continuous current flow to the loads that are not controlled by the On/Off state of the output circuits.

Jumper Comb

Two-position jumper combs are available (as an option for barrier style terminal blocks only) for connecting digital common wiring between terminals 10 and 12, and for connecting +24Vdc between terminals 9 and 11. See Figure 56.

+V Terminals

The +V1 (terminal 9) and +V2 (terminal 11) are the positive power supply input to power the output circuits for the two groups of eight inputs per group. The +V supply must provide minimum 24 Vdc at 65 mA (min) per group.

Hazardous voltages exist at terminal blocks.

Using switches at field devices, disconnect the field wiring from power sources before servicing.
 Failure to comply with these instructions could result in death or serious injury.

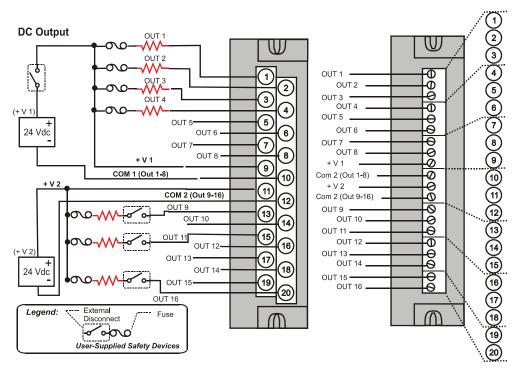


Figure 55 – DC Output Module Wiring Diagram

DC Input

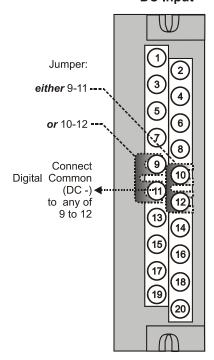


Figure 56 - DC Output Jumpers

32 point DC Output Wiring

The DC digital Output module provides 32 externally powered outputs in 2 groups of 16 (Figure 57). The outputs are high side switching (current sourcing) type. Over-current protection is provided for each channel, in 4 groups of 8 channels. In case of short circuit for any output channel, that whole group of 8 is switched off. Power cycling is not required to reset the module.

A green LED on the module provides indication of an ON state for each output.

Requires Low Voltage Euro style 36-terminal terminal block.

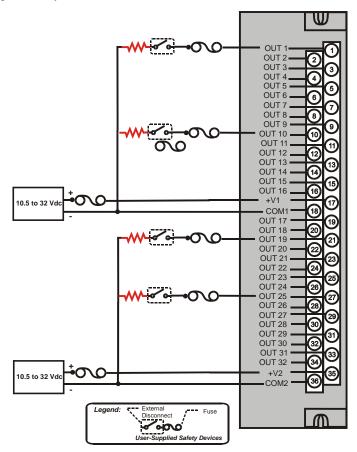


Figure 57 – 32 point DC Output Module Wiring

AC Output Module Wiring

The AC Output Module provides eight output circuits. Each output is isolated from the other outputs. An example of AC output wiring is shown in Figure 58. Specifications for this module and for other modules are given in the Specifications section of this manual.

Output Loading

Voltage: 85 to 240 Vac

Maximum per output: 2.0A resistive load

Maximum per module: 8.0A

NOTE

When exceeding 1.0 A per output, it is recommended (but not required) to connect the high-current loads to every other output - for example, outputs 1, 3, 5, 7 or 2, 4, 6, 8. This distributes heat more evenly across the heat sink.

Jumper Comb

A ten-position jumper comb is available for inter-connecting all L1 (Hot) terminals (1, 3, 5, 7, 9, 11, 13, 15, 17, 19). See Figure 59.

Replaceable Fuses

Each output circuit on the AC Output Module includes a (plug-in) replaceable fuse.

Replacement fuse is from Wickmann, part #3741315041. This is a 3.15 Amp time lag fuse with UL/CSA approval for 250 VAC.

Hazardous voltages exist at terminal blocks.

• Using switches at field devices, disconnect the field wiring from power sources before servicing.

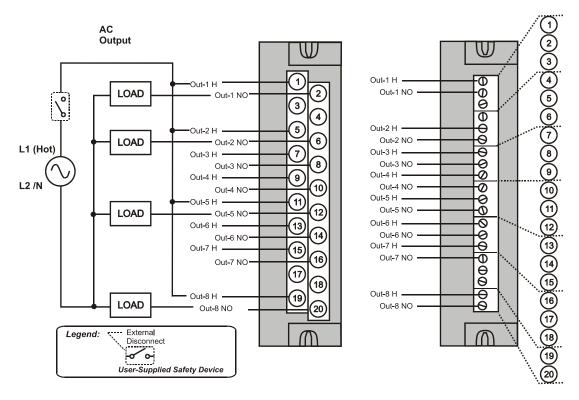


Figure 58 – AC Output Module Wiring Diagram

AC Output

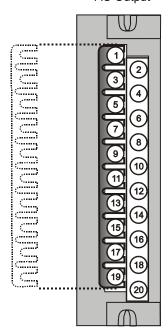


Figure 59 – AC Output Module Jumper

Relay Output Module Wiring

The Relay Output Module provides eight individually isolated, electromechanical relay outputs. Four of the outputs are Form-C, and the other four are Form-A. A schematic showing the relationship of individual Form-A relays and Form-C relays to external (user) connections is given in Figure 60.

Examples of Relay Output wiring as they relate to connections on the Terminal Block are shown in Figure 61

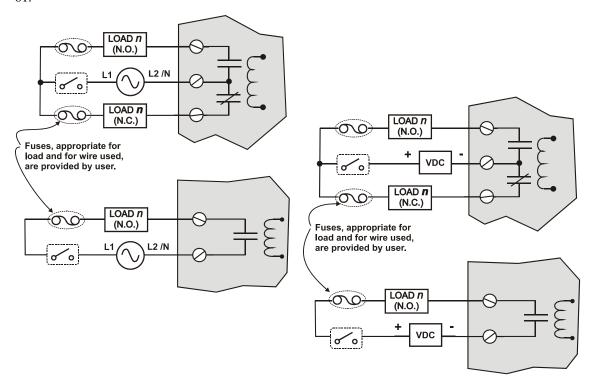


Figure 60 - Schematic Example: Relay Output and External Wiring

Contact Rating

Maximum current/output: 4A at 250Vac/30Vdc with resistive load

Maximum current per module: No de-rating per module, but ensure compliance with maximum ratings for each output.

Note: specified relay life is 1,000,000 cycles. For applications requiring constant cycling of output, Honeywell recommends using a solid state AC or DC output module.

Required Output Fusing

Outputs are not fused in the Relay module. Install a fuse for each output at the field device that is appropriate for the load and the wire used.

Jumper Comb

A ten-position jumper comb, available for the AC Output Module, can be cut in half and used as shown in Figure 62 to reduce the number of wires required to connect the Relay Output Module to AC Neutral or to DC Common.

A WARNING /

Hazardous voltages exist at terminal blocks.

Using switches at field devices, disconnect the field wiring from power sources before servicing.

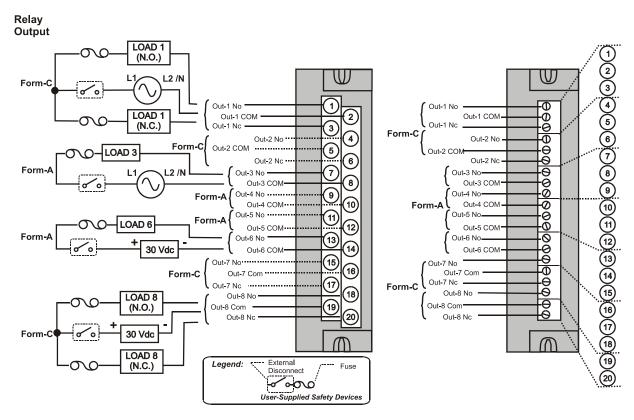


Figure 61 – Relay Output Module Wiring Diagram

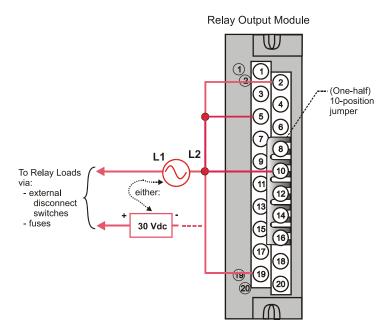


Figure 62 - Relay Output Module Jumpers

Pulse/Frequency/Quadrature Module Wiring (Figure 63 through Figure 69)

The 4 Channel Pulse/Frequency/Quadrature Module provides four different functionalities in the form of Pulse Input, Frequency measurement, Quadrature encoder input and Pulse Output. Each of the 4 channels can be configured for any one of these four functionalities; with the exception that quadrature encoder input (A and B pulses) can be applied to only Channels 1 and 2 respectively. When configured for quadrature, Channels 3 and 4 will still be available for use.

The Pulse Output functionality uses the digital output available on the module for outputting pulses.

Before installing be sure to set the module DIP switches for differential or single ended. See page 73.

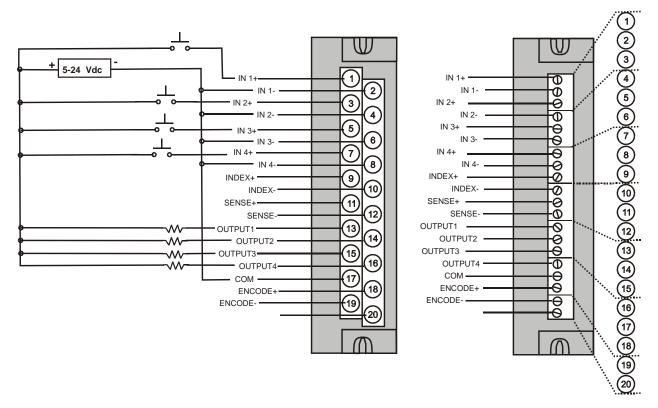


Figure 63 - Pulse Counting Wiring

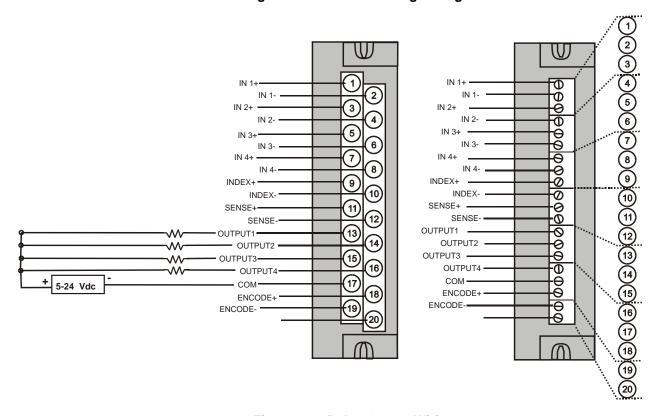


Figure 64 - Pulse Output Wiring

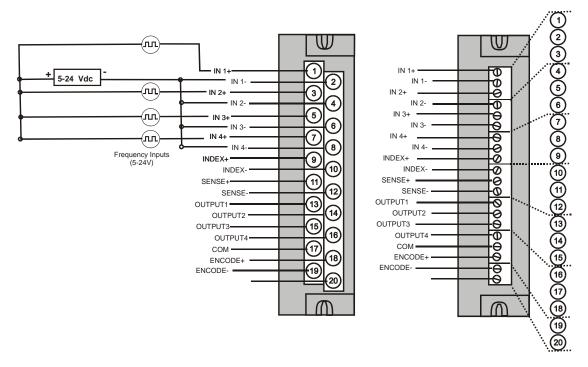


Figure 65 – Frequency Wiring

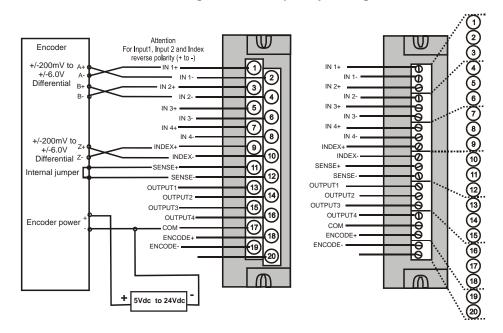


Figure 66 - Quadrature, Differential, External Power Wiring

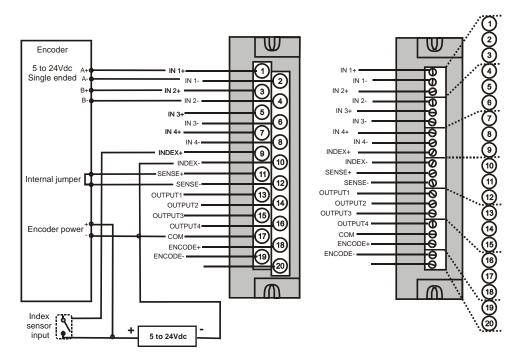


Figure 67 – Quadrature, Single Ended, External Power Wiring

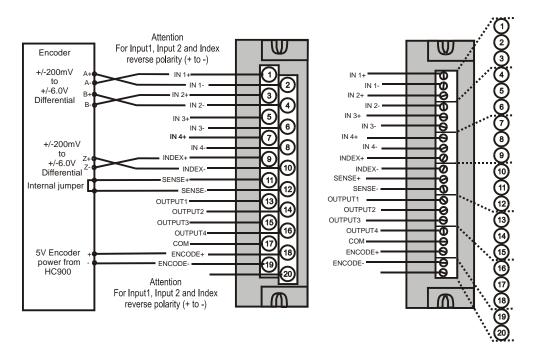


Figure 68 - Quadrature, Differential, HC900 Power Wiring

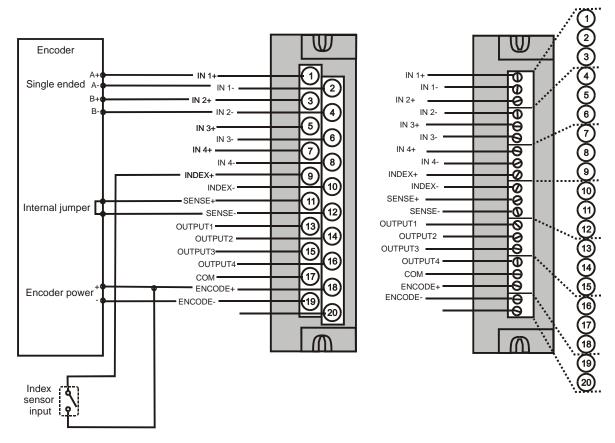
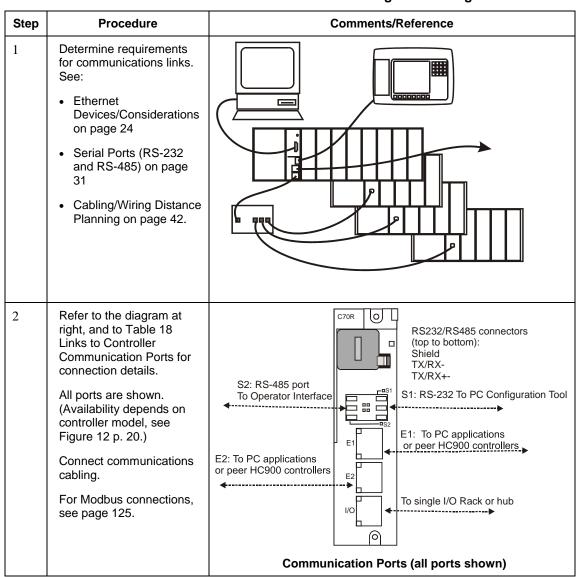


Figure 69 - Quadrature, Single Ended, HC900 Power Wiring


Communications Installation

Overview

This section contains descriptions, procedures and recommendations for installing communications systems and components.

Wiring and cabling

Table 17 - Connect Communications Wiring and Cabling

Step	Procedure	Comments/Reference
3	Set IP addresses and	Default IP addresses:
	subnet masks.	C30/C50: 192.168.1.254 and Subnet Mask of 255.255.255.0.
		C70/C70R: E1: 192.168.1.254, E2: 192.168.2.254. Must be on different subnets.

Links to controller communication ports

Refer to Table 18 and the figure in Step 2 above. Port availability depends on Controller model.

Table 18 – Links to Controller Communication Ports

Controller Port /Connector Type	Link Type: Controller to	Cable Type	To Device/Port	Details
RS-232 3-plug connector	Desktop or Laptop PC	RS-232 Null Modem cable, up to 50' Or RS-232 PC modem cable, up to 50'	Serial port of PC (w/ Null Modem cable) or Modem. Refer to RS-232 Remote Connection to PC Configuration Tool on page 109.	For Wiring details of Null Modem cable see Table 20.
RS-232 3-plug connector	Modbus master (controller is single slave)	RS-232 Null Modem cable, up to 50' Or RS-232 PC modem cable, up to 50' RS-232 to RS-485 converter	Refer to device's port instructions	Page 34 Figure 24 & Figure 25 #2, 7, 9
RS-232 3-plug connector	Modbus master (controller is one of multiple slaves)	RS-232 to RS-485 converter	Refer to device's port instructions	Page 34 Figure 25 #6
RS-232 3-plug connector	Modbus slave network (controller is master)	RS-232 to RS-485 converter	Refer to device's port instructions	Page 34 Figure 24& Figure 25 #4, 5, 8
RS-485 3-Plug connector	Operator interface	Belden #9271 (or equivalent)	Terminal connector of operator interface. (Refer to Table 19.) Connect from each CPU (A and B) to the OI.	Page 34 Figure 24 & Figure 25 #1, 2, 4, 5, 6, 11
RS-485 3-Plug connector	Modbus master (controller is slave)	Belden #9271 (or equivalent)	Refer to device's port instructions	Page 34 Figure 24 & Figure 25 #3, 8, 9

Controller Port /Connector Type	Link Type: Cable Type Controller to		To Device/Port	Details
RS-485 3-Plug connector	Modbus slave network (controller is master)	Belden #9271 (or equivalent)	Refer to device's port instructions	Page 34 Figure 25 #7, 10
E1 10/100 Base-T RJ45	Host, Peer, and Internet Devices	Shielded CAT5 cable, up to 100 meters.	RJ45 connector on Host, Peer, or Internet Device	Default IP address is 192.168.1.254
E2 10/100 Base-T RJ45	Host, Peer, and Internet Devices	Shielded CAT5 cable, up to 100 meters.	RJ45 connector on Host, Peer, or Internet Device	Default IP address is 192.168.2.254
E1 10/100Base-T RJ45	Lead CPU supports redundant Modbus/TCP Protocol to OPC server, PC supervisory and data acquisition software packages and Hybrid Control Designer configuration software.			Default IP address is 192.168.1.254
E2 10/100Base-T RJ-45	Lead CPU supports redundant Modbus/TCP Protocol to OPC server, PC supervisory and data acquisition software packages and Hybrid Control Designer configuration software.			Default IP address is 192.168.2.254
I/O 100Base-T	Single I/O rack	Shielded Ethernet CAT5 cable with RJ-45 connectors	C50/C70 Controller's I/O port to Scanner 1's I/O port.	
I/O 100Base-T	Single I/O rack	Shielded Ethernet CAT5 cable with RJ-45 connectors	C70R CPU A's I/O port to Scanner 2's I/O A port. C70R CPU B's I/O port to Scanner 2's I/O B port.	

Controller Port /Connector Type	Link Type: Controller to	Cable Type	To Device/Port	Details
I/O 100Base-T	2 or more I/O racks	Shielded Ethernet CAT5 cable with RJ-45 connectors	C70R CPU A's I/O port to approved switch. From this switch to each Scanner 2's I/O A port. One (1) additional switch may be used, for a total of 2 switches between CPU A and the I/O racks. C70R CPU B's I/O port to approved switch. From this switch to each Scanner 2's I/O B port. One (1) additional switch may be used, for a total of 2 switches between CPU B and the I/O racks.	

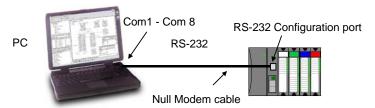
Connecting the Operator Interface to the Controller

Using parts in Table 19 connect the Operator Interface to the RS-485 port on the controller. See page 31 for port location. Typically, the cable that interconnects this port to the Operator Interface must be made during installation, because it will probably be necessary to run the cable through conduit.

On C70R connect cable from each CPU's RS-485 port to the Operator Interface. See Operator Interface manual #51-52-25-108 for connection details.

Table 19 - Parts needed to make RS-485 Cable

Part #	Quantity	Description
Belden #9271 (or equivalent), with 120 ohm resistors (2,000 feet Maximum)	Variable	Commercially available communication cable
Or		
Belden #9182 (or equivalent), with 150 ohm resistors (4, 000 feet maximum)		
	1	10-terminal connector (Supplied with the operator interface)
Phoenix #1840379 (or equivalent) for C30/C50	1	Connector (3-pin) (Supplied with the controller CPU module)
Phoenix 1803581 for C70R.		
047260	1	Ferrite cable clamps (Supplied with the operator interface)
089037	2	Nylon cable ties

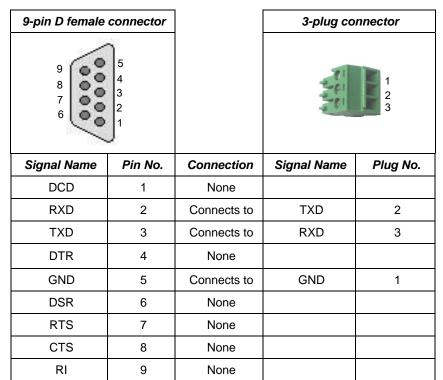

Connecting the HC900 Controller to a PC with the Hybrid Control Designer Software

To establish communications between the HC900 controller and the Hybrid Control (HC) Designer configuration software use any of the following methods.

- A. Direct Serial RS-232 connection. See page 107.
- B. Modem connection. See page 110.
- C. Direct Ethernet connection. See page 121.
- D. Networked Ethernet connection. See page 123.

These methods are described below.

A. Direct Serial RS-232 Connection



Step	Procedure
1	Prepare a null modem cable. Refer to RS-232 Direct Link to PC Configuration Tool (page 108) for specific instructions on the null modem cable.
2	Connect one end of the null modern cable to the HC900 controller's RS-232 configuration port.
3	Connect the other end to an available serial port (COM1 through COM8) on your PC. Refer to RS-232 Direct Link to PC Configuration Tool (page 108) for specific instructions on the null modem cable.
4	If a configuration is not available, start a new configuration in HC Designer by selecting File, New. After selecting controller type and revision, select OK.
5	From the Utilities Worksheet (Utilities tab in the main window) in the HC Designer software, set up the PC's serial port attributes for use with the controller. Make sure that the same baud rate is set up for the PC port and the controller. In general, the faster the baud rate the better the performance, however, your PC may not communicate reliably at the faster baud rates. (Refer to the HC900 Hybrid Control Designer User's Guide or its respective on-line help, Setting Up PC Com Ports and Connections - PC Serial Com Port Setup and Utilities Worksheet - Set Controller Serial Port, for details on this step). Current PC to Controller Connection Settings: Port OMI PC Port Setup Port COMI: COM2 COM3 COM4 COM5 COM6 COM7 COM8
6	On the PC, use the Utilities Worksheet in the HC Designer software to select the Com port as the current port.

RS-232 Direct Link to PC Configuration Tool

The Controller can be connected directly to the PC, in which case a Null Modem Cable is required. The Null Modem Cable can be ordered from Honeywell (Part# 50004820-501). Cable connections are shown in Table 20.

Table 20 - Null Modem Cable Connections

RS-232 Remote Connection to PC Configuration Tool

The Controller can also be connected remotely by a set of modems, which are available from third-party suppliers. A Null Modem Cable is used between the Controller and the modem, shown in Figure 70. The C50 Null Modem cable is available from Honeywell (Part # 51404755-501) or from third-party suppliers, or can be fabricated by the user. The C70R Null Modem Cable can be ordered from Honeywell (Part# 50004820-501). The Null Modem Cable construction is shown in Table 20.

A second Null Modem cable is used between the PC and the internal or external modem at the other end, as shown in Figure 70. This cable is the C50 Null Modem Cable, same as described above (Part # 51404755-501).

Remote controller access via dial-up modem is available via the communication setup in the PC configuration tool. All functions of the Hybrid Control Designer configuration tool can be performed over this link. Remote access functions include on-line monitoring, configuration upload and download, and firmware upgrade.

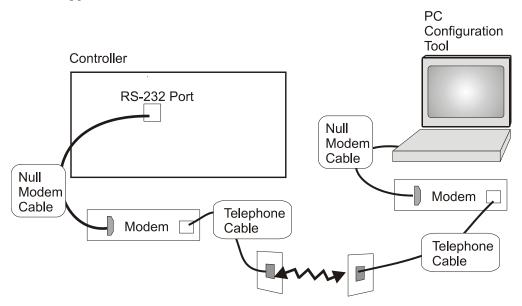
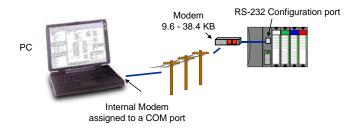
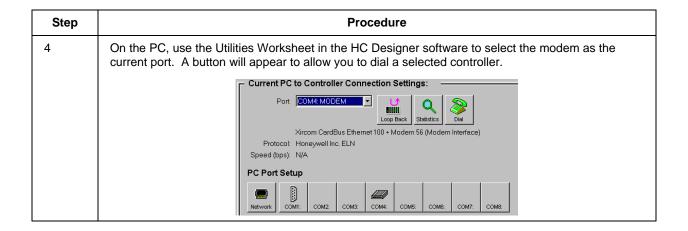




Figure 70 – RS-232 Remote Access via Modems

B. Modem Connection

Step	Procedure		
1	Connect a modem to the HC900 controller's RS-232 configuration port. Refer to Modem configuration examples (page 113) for a list of approved modems, their settings, and the connection specifics.		
2	On the PC, check on the Utilities Worksheet in the HC Designer software to see if the PC modem is properly installed. A modem icon on the associated COM port button indicates the PC modem is properly installed (internal or external). If the modem icon is not visible on the associated COM port button, use the modem supplier's instructions to properly install the modem and verify the installation using the Windows' Control Panel Modem property page to confirm proper installation.		
3	Set up the phone book in the HC Designer software. This list includes the phone numbers for each of the HC900 controllers that can be connected using a modem. The phone book can be accessed from the Main Menu (View Phone Book) or from the Utilities Worksheet by selecting the modem port as the current port. (Refer to the HC900 Hybrid Control Designer User's Guide or its respective online help, Setting Up PC Com Ports and Connections - PC Serial Com Port Setup and Remote Access, for details on this step.)		
	Phone Number		
	Name		
	2 HC900 Furnace 1 215-822-3001 Plant 3 Location		
	4		

Modem requirements

Most commercially available modems can be used with the HC900 Controller. The modem must have the following capabilities:

- · RS-232 interface
- · Auto answer
- Can operate at 1200, 2400, 4800, 9600, 19200, 38400, 57600 baud; recommended 9600 or 19200 or 38400 baud, 8 data bits, 1 stop bit, and no parity
- · Hardware handshaking can be disabled
- · Software handshaking can be disabled
- Data Terminal Ready (DTR) input can be disabled
- Result codes can be suppressed
- Echo can be disabled
- Must be equipped with non-volatile memory (NVRAM) so that settings that are configured using command strings can be retained during a power-outage
- Must be able to load the NVRAM settings automatically on power-up

Cable requirements

You will need an interface cable to connect the modem to the DB-9 female on the controller. If your modem has a 25-pin connector, be sure to use a DB-25 to DB-9 modem cable.

TIP

The Null Modem cable used to directly connect a PC running Hybrid Control Designer software to the controller may typically not be used to connect the PC to the modem or to connect the modem to the controller.

If your modern requires command string configuration, you will need an interface cable to connect the modem to your PC. Refer to your modem and computer documentation to determine this cable's requirements.

Modem configuration

Before connecting a modem to the controller's RS-232 port (marked "CONFIGURATION"), the modem must be configured with the following settings:

- Baud Rate = 1200, 2400, 4800, 9600, 19200, 38400, 57600 (Must match Baud Rate configured in HC900 Controller)
- Parity = None
- 1 stop bit
- 8 data bits
- · No handshaking
- · Ignore DTR
- Suppress result codes
- · Suppress echo
- · Auto answer
- Disable command recognition (only necessary if the modem has this capability)

Some of these settings may be settable via switches. Others may require command strings to be written to the modem using a PC terminal program such as Hyperterminal. You will need to refer to your modem's documentation to make this determination. Those settings that are configured using command strings must be saved to the modem's non-volatile RAM (NVRAM), and the NVRAM must be configured as the profile that gets loaded when the modem is powered up.

Most modems are equipped with auto-recognition to set the baud rate, parity, stop bits, and data bits. If your modem has no means of setting these using switches, then most likely it is equipped with auto-recognition. To configure the port settings of a modem with auto recognition, do the following:

Step	Action
1	Connect the modem to a PC.
2	Power up the modem.
3	Start up a PC terminal program such as Hyperterminal.
4	Configure the PC COM Port for 1200, 2400, 4800, 9600*, 19200*, 38400*, 57600 baud (must match Baud Rate configured in HC900 Controller), no parity, 1 stop bit, and 8 data bits. *recommended
5	Establish communications with the modem. A common way of doing this is simply entering the AT E1 Q0 command and seeing if the modem responds with OK. Once you establish communication to the modem, its port settings are configured.
6	Save the port settings to the profile that gets loaded on power-up.

Modem configuration examples

Below are procedures for setting up the following commercially available modems:

- 3Com US Robotics 56K Data/Fax External Modem
- Zoom 56K Dualmode External Modem (page 115)
- Best Data 56SX Data Fax External Modem (page 116)
- SixNet VT-MODEM Industrial External Modem (page 117)

3Com US Robotics 56K Data/Fax External Modem

Step Action

1 Ensure that the switches are set to the factory settings:

Switch	Setting	Position	Function
1	OFF	UP	Normal DTR operations
2	OFF	UP	Verbal (word) results
3	ON	DOWN	Enable result codes
4	OFF	UP	Displays keyboard commands
5	ON	DOWN	Disables auto answer
6	OFF	UP	Modem sends CD signal when it connects with another modem
7	OFF	UP	Loads Y0-Y4 configuration from user-defined nonvolatile memory (NVRAM)
8	ON	DOWN	Enables recognition (smart mode)

- Connect the modem to a PC. If your computer's RS-232 port has a 25-pin connector, use a DB-25 male to DB-25 female RS-232 cable. If your computer's RS-232 port has a 9-pin connector, use a DB-25 male to DB-9 female modem cable.
- **3** Power-up the modem.
- 4 Run a serial communication port program such as Hyperterminal.
- 5 Within the communication program, select the port to which the modem is connected.
- **6** Configure the port to these settings:

```
baud rate = 1200, 2400, 4800, 9600, 19200, 38400, 57600 (Must match Baud Rate configured in HC900 Controller) data bits = 8 parity = none stop bits = 1 flow control = none
```

7 In the program's terminal window, restore factory defaults by keying-in the following command string:

AT &F0

Then, press the ENTER key.

The modem should respond with OK.

Step Action

8 Key in the following command string:

AT Y0

Then, press the **ENTER** key.

The modem should respond with OK.

9 Key in the following command string:

AT &B1

Then, press the **ENTER** key.

The modem should respond with OK.

10 Key-in the following command string:

AT E0 Q1 &W0

The Modem will not respond.

- 11 Power down the modem and disconnect it from the PC.
- **12** Set the modem switches to the following:

Switch	Setting	Position	Function
1	ON	DOWN	Modem ignores DTR (Override)
2	OFF	UP	Verbal (word) results
3	OFF	UP	Suppresses result codes
4	ON	DOWN	Suppresses echo
5	OFF	UP	Modem answers on first ring
6	ON	DOWN	CD always ON (Override)
7	OFF	UP	Loads Y0-Y4 configuration from user-defined nonvolatile memory (NVRAM)
8	OFF	UP	Disables command recognition (dumb mode)

- Connect the modem to the RS-232 port of the HC900 using a DB-25 male to DB-9 male RS-232 cable.
- 14 Connect the modem to a telephone jack.
- Power up the modem and the HC900 Controller.
- 16 On a remote computer, run Hybrid Control Designer software.
- 17 Set up Hybrid Control Designer software to dial the HC900 Controller.
- 18 Verify that communications is established with the remote HC900 Controller.

Zoom 56K Dualmode External Modem

Step	Action
1	Connect the modem to a PC. If your PC's RS-232 port has a 25-pin connector, use a DB-25 male to DB-25 female RS-232 cable. If your PC's RS-232 port has a 9-pin connector, use a DB-25 male to DB-9 female modem cable.
2	Connect power to the modem.
3	Power up the modem.
4	Run a serial communication port program such as Hyperterminal.
5	Within the communication program, select the port to which the modem is connected.
6	Configure the port to these settings:
	baud rate = 1200, 2400, 4800, 9600, 19200, 38400, 57600 (Must match Baud Rate configured in HC900 Controller) data bits = 8 parity = none stop bits = 1 flow control = none
7	In the program's terminal window, restore factory defaults by keying-in the following command string:
	AT &F0
	Then, press the ENTER key.
8	In the program's terminal window, key-in the following command string:
	AT E1 Q0
	Then, press the ENTER key. The Modem should respond with OK.
9	Key-in the following command string:
	AT &Y0 &C0 &D0 &R1 &S0 &K0 S0=1
	Then, press the ENTER key. The Modem should respond with OK.
10	Key-in the following command string:
	AT EO Q1 &WO
	Then, press the ENTER key. The Modem will not respond.
11	Power down the modem and disconnect it from the PC.
12	Connect the modem to the RS-232 port of the HC900 Controller using a DB-25 male to DB-9 male RS-232 cable.
13	Connect the modem to a telephone jack.
14	Power up the modem and the HC900 Controller.
15	On a remote computer, run Hybrid Control Designer software.
16	Set up the PC software to dial the HC900 Controller.
17	Use the PC software "Loop-back" feature to verify that communications are established with the remote HC900 Controller.

Best Data 56SX Data Fax External Modem

Step	Action			
1	Connect the modem to a PC. If your PC's RS-232 port has a 2- pin connector, use a DB-9 male to DB-25 female modem cable. If your PC's RS-232 port has a 9-pin connector, use a DB-9 male to DB-9 female RS-232 cable.			
2	Connect power to the modem.			
3	Power-up the modem.			
4	Run a serial communication port program such as Hyperterminal.			
5	Within the communication program, select the port to which the modem is connected.			
6	Configure the port to these settings:			
	baud rate = 1200, 2400, 4800, 9600, 19200, 38400, 57600 (Must match Baud Rate configured in HC900 Controller) data bits = 8 parity = none stop bits = 1 flow control = none			
7	In the program's terminal window, restore factory defaults by keying-in the following command string:			
	AT &FO			
	Then, press the ENTER key.			
8	In the program's terminal window, key-in in the following command string:			
	AT E1 Q0			
	Then, press the ENTER key. The modem should give an OK response.			
9	Key-in the following command string:			
	AT &C0 &D0 &K0 &R1 &S0 &Y0 S0=1			
	The Modem should respond with OK.			
10	Key-in the following command string:			
	AT EO Q1 &WO			
	The Modem will not respond.			
11	Power down the modem and disconnect it from the PC.			
12	Connect the modem's serial cable to the RS-232 port of the HC900 using a DB-9 male to DB-9 male RS-232 cable.			
13	Connect the modem to a telephone jack.			
14	Power up the modem and the HC900 Controller.			
15	On a remote computer, run Hybrid Control Designer software.			
16	Set up the PC software to dial the HC900 Controller.			
17	Use the PC software "Loop-back" feature to verify that communications are established with the remote HC900 Controller.			

SixNet VT-MODEM Industrial External Modem

Step	Action			
1	Connect the modem to a PC. If your PC's RS-232 port has a 25 pin connector, use a DB-9 male to DB-25 female modem cable. If your PC's RS-232 port has a 9 pin connector, use a DB-9 male to DB-9 female RS-232 cable.			
2	Connect power to the modem. You will need to supply an external power supply with a DC voltage between 10 and 30 VDC.			
3	Power-up the modem.			
4	Run a serial communication port program such as Hyperterminal.			
5	Within the communication program, select the port to which the modem is connected.			
6	Configure the port to these settings: baud rate = 1200, 2400, 4800, 9600, 19200, 38400, 57600 (Must match Baud Rate configured in HC900 Controller) data bits = 8 parity = none stop bits = 1 flow control = none			
7	In the program's terminal window, restore factory defaults by keying-in the following command string:			
	AT &FO			
	Then, press the ENTER key.			
8	In the program's terminal window, key-in the following command string:			
	AT E1 Q0			
	Then, press the ENTER key. The modem should give an OK response.			
9 Key-in the following command string:				
	AT &Y0 &C0 &D0 &R1 &S0 &K0 S0=1			
	The Modem should respond with OK.			
10	Key-in the following command string:			
	AT EO Q1 &WO			
	The Modern will not respond.			
11	Power down the modem and disconnect it from the PC.			
12	Connect the modem to the RS-232 port of the HC900 Controller using a DB-9 male to DB-9 male modem cable.			
13	Connect the modem to a telephone jack.			
14	Power-up the modem and the HC900 Controller.			
15	On a remote computer, run Hybrid Control Designer software.			
16	Set up the PC software to dial the HC900 Controller.			
17	Use the PC software "Loop-back" feature to verify that communications are established with the remote HC900 Controller.			

Connecting C70R Redundant Ethernet to a PC with HC Designer or other applications

Only use Shielded CAT 5 cable for network connections. See Figure 71 and Table 21.

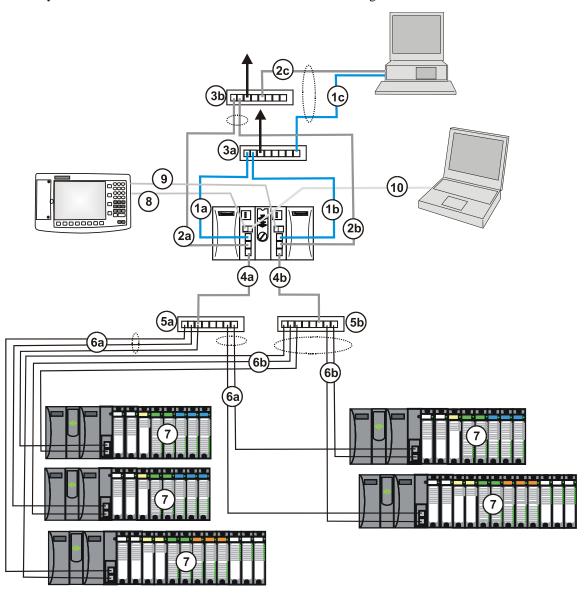


Figure 71 – Redundant Networks (see Table 21)

Table 21 – Redundant Network connections in Figure 71

Key No.	Connection/Description
1a	Connect CPU-A E1 port to Ethernet switch (3a)
1b	Connect CPU-B E1 port to Ethernet switch (3a)
1c	Connect Ethernet switch (3a) to PC Ethernet port
2a	Connect CPU-A E2 port to Ethernet switch (3b)
2b	Connect CPU-B E2 port to Ethernet switch (3b)
2c	Connect Ethernet switch (3b) to Ethernet port
3a	Ethernet switch for CPU-A E1 port
3b	Ethernet switch for CPU-B E1 port
4a	Connect CPU-A I/O port to Ethernet switch (5a)
4b	Connect CPU-B I/O port Ethernet switch (5b)
5a	Ethernet switch for CPU-A's I/O racks
5b	Ethernet switch for CPU-B's I/O racks
6a	Connect Ethernet switch (5a) to each I/O rack's I/O A port
6b	Connect Ethernet switch (5b) to each I/O rack's I/O B port
7	I/O Racks
8	Connect CPU-A S2 port (RS-485) to Operator Interface port
9	Connect CPU-B S2 port (RS-485) to Operator Interface port
10	Connect CPU-A S1 port to PC RS-232 port.

Table 22 - Redundant network connections

Step	Procedure			
1	Make sure the PC has 2 Ethernet NICs (Network Interface Cards) installed and enabled.			
2	Connect Ethernet 10Base-T straight or crossover cables to the HC900 controller's E1 and E2 ports.			
3	Connect the other end of the cables to the PC's Ethernet ports.			
4	On the PC, use the Utilities Worksheet in the HC Designer software to connect to the controller over Ethernet. Every HC900 C70R controller is shipped with the default IP addresses for port E1 192.168.1.254 and port E2 192.168.2.254. Default Subnet Mask is 255.255.255.0. You can use these network parameters initially for testing or configuration use. In the Current PC to Controller Connection Settings area of the dialog box, click on the Network button to bring up the Network Port Properties dialog box and Add the default IP addresses. Be sure both PC Ethernet NICs have fixed IP addresses on the same subnet as the controller (192.168.1.x and 192.168.2.x, where x= 2 to 253).			

Step	Procedure				
5	In the Current PC to Controller Connection Settings area of the dialog box, select Network for the Port to be used and the default IP address for the Address. Click on Loopback to assure communications between the PC and the controller. You may now use the Ethernet port for configuration interface.				
	Current PC to Controller Connection Settings: Port. Network Device Name: Honeywell HC900 Controller Address: 192.168.1.254 Protocol: Modbus(R) TCP Speed (bps): N/A				
6	Consult your IT systems administrator for allocating IP addresses if this controller will require a unique IP address within a plant network. Be also sure that the PC Network Interface Cards have an IP address that allows access to the controller on the subnet after changing the controller's network parameters.				
7	You may change the controller's IP address and related network parameters from its default using the Utilities Worksheet in the HC Designer software. This may be done using either the RS-232 serial port (typically used) via a null modem cable connection or the Ethernet connection from the PC to the controller. If the RS-232 connection is desired, make sure the proper PC serial Com port to be used has been set up (See Direct Serial RS-232 Connection page 107). Attention: IP addresses for E1 and E2 must be on different subnets.				
8	Select the Set Controller's Network Parameters button. Using the wizard (bottom radio button), select the PC port to be used, then set the controller's new network parameters including IP address, Subnet Mask (if other than the default), and Default Gateway IP address (if required, otherwise use default). Refer to the HC900 Hybrid Control Designer User's Guide or its respective online help, Utilities Worksheet - Set Controller's Network Parameters, for further details on this step. Note: This step will require the controller to be placed temporarily in the Program mode. After the new network parameters have been downloaded, the controller will conduct a Cold Start in its transition to RUN. This will cause an initialization if there is a current configuration in the controller.				
	Note: Network communication will only occur with the Lead CPU. If using a single network connection during initial setup, verify connection is made with the Lead CPU.				

Two redundant systems with PC supervision

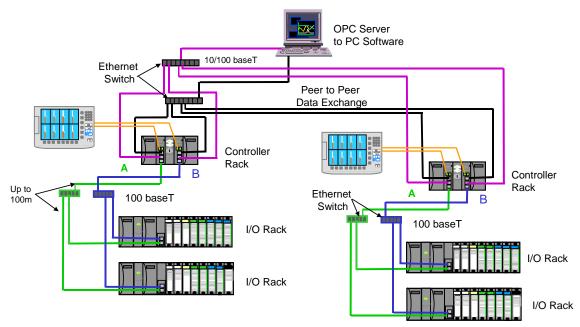
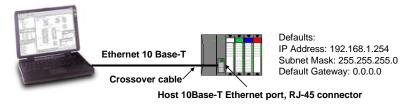
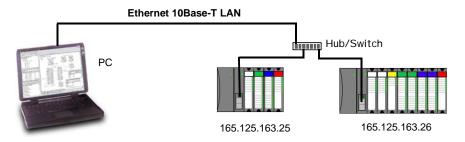



Figure 72 – Two redundant systems with PC supervision


C. Direct Ethernet Connection to one HC900 controller

Step	Procedure			
1	Make sure the PC has an Ethernet NIC (Network Interface Card) installed and enabled.			
2	Connect an Ethernet 10Base-T crossover cable to the HC900 controller's Open Ethernet RJ-45 port (top RJ-45 port).			
3	Connect the other end of the Ethernet 10Base-T crossover cable to the PC's network port.			
4	On the PC, use the Utilities Worksheet in the HC Designer software to connect to the controller over Ethernet. Every HC900 controller is shipped with the default IP address of 192.168.1.254 and Subnet Mask of 255.255.255.0. You can use these network parameters initially for testing or configuration use. In the Current PC to Controller Connection Settings area of the dialog box, click on the Network button to bring up the Network Port Properties dialog box and Add the default IP address. Be sure the Ethernet Network Interface Card in the PC has a fixed IP address on the same subnet as the controller (192.168.1.x, where x= 2 to 253).			

Step	Procedure				
5	In the Current PC to Controller Connection Settings area of the dialog box, select Network for the Port to be used and the default IP address for the Address. Click on Loopback to assure communications between the PC and the controller. You may now use the Ethernet port for configuration interface.				
	Current PC to Controller Connection Settings: Port Network Device Name: Honeywell HC900 Controller Address: 192.168.1.254				
	Protocol: Modbus(R) TCP Speed (bps): N/A PC Port Setup for Controller Access				
	Network COM1: COM2: COM3: COM4: COM5: COM6: COM7: COM8:				
6	Consult your IT systems administrator for allocating IP addresses if this controller will require a unique IP address within a plant network. Be also sure that the PC Network Interface Card has an IP address that allows access to the controller on the subnet after changing the controller's network parameters.				
7	You may change the controller's IP address and related network parameters from its default using the Utilities Worksheet in the HC Designer software. This may be done using either the RS-232 serial port (typically used) via a null modem cable connection or the Ethernet connection from the PC to the controller. If the RS-232 connection is desired, make sure the proper PC serial Com port to be used has been set up (See Direct Serial RS-232 Connection page 107).				
8	Select the Set Controller's Network Parameters button. Using the wizard (bottom radio button), select the PC port to be used, then set the controller's new network parameters including IP address, Subnet Mask (if other than the default), and Default Gateway IP address (if required, otherwise use default). Refer to the HC900 Hybrid Control Designer User's Guide or its respective online help, Utilities Worksheet - Set Controller's Network Parameters, for further details on this step.				
	Note: This step will require the controller to be placed temporarily in the Program mode. After the new network parameters have been downloaded, the controller will conduct a Cold Start in its transition to RUN. This will cause an initialization if there is a current configuration in the controller.				

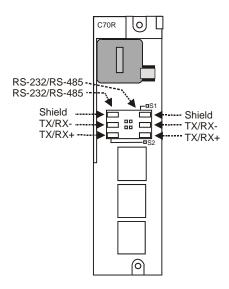
D. Network Access to one or more controllers

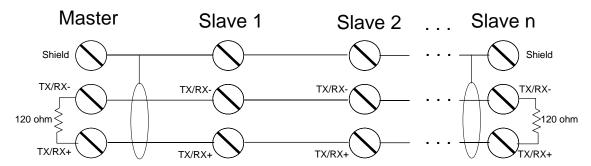
Step	Procedure			
1	Make sure the PC has an Ethernet NIC (Network Interface Card) installed and enabled. Be sure the NIC has an IP address (fixed or DHCP served) that allows access to controllers with IP addresses on the same or other subnet. Consult your IT department or network administrator for allocating IP addresses to the controllers if required.			
2	You will need to set each controller's IP address prior to network connection since every HC900 controller is shipped with the default IP address of 192.168.1.254. Placing multiple controllers on the same network before they have been given unique IP addresses will cause problems.			
3	On the PC, use the Utilities Worksheet in the HC Designer software to set up the serial RS-232 connection to the controller at the desired baud rate (see Direct Serial RS-232 Connection above). This will require a null modem cable.			
4	Select the Set Controller's Network Parameters button. Using the wizard (bottom radio button), s the PC COM port to be used, then set the controller's new network parameters including IP address Subnet Mask, and Default Gateway (if required). See your IT network administrator for proper entries. (Refer to the on-line help provided with the HC Designer software, Utilities Worksheet, S Controller's Network Parameters, for further details on this step).			
	Note: This step will require the controller to be placed temporarily in the Program mode. After the new network parameters have been downloaded, the controller will conduct a Cold Start in its transition to RUN. This will cause an initialization if there is a current configuration in the controller.			
5	Repeat step 4 for each controller on the same network.			
6	Select the Network button at the bottom of the dialog box and Add any or all of controller IP addresses configured to the list. This will allow selection of any of these Addresses for downloading or uploading configurations.			
7	You may now connect the controllers to your network for access by the Hybrid Control Designer software. For the Networking Example shown, connect one end of the Ethernet 10Base-T cable to the PC's network port. Connect the other end of the Ethernet 10Base-T cable to the Ethernet switch.			
8	Connect an Ethernet 10Base-T cable to each HC900 controller's Open Ethernet RJ-45 port (top RJ-45 port). Connect the other end of each Ethernet 10Base-T cable to the Ethernet switch.			
9	You may now access any controller on the network for configuration access by assigning Network as the Port and the respective IP Address as the Address of the controller.			
	ATTENTION: When multiple controllers are on the network, be careful to check for the correct IP address of the destination controller prior to download of a new configuration or when downloading edits to a configuration while in RUN mode. Otherwise, you may inadvertently download a configuration to the wrong controller.			

Setting Up the Controller Network Parameters

See the Hybrid Control Designer Users Guide, Doc. # 51-52-25-110 or respective HC Designer Help Files for setting up following network parameters:

- IP Address, Subnet Mask (optional), Default Gateway IP Address (optional)
- Network Name (optionally used in Peer Data Exchange)
- Local Name (optional, user identifier for controller)
- E-mail Server IP Address (required if e-mail alarms are configured)


ATTENTION


This setup will require the controller to be placed temporarily in the Program mode. After the new network parameters have been downloaded, the controller will conduct a Cold Start in its transition to RUN. This will cause an initialization if there is a current configuration in the controller.

Connecting the HC900 Controller to Modbus device(s)

RS-485 Modbus connections

Using the master and slave(s) RS-485 ports of the controller and other device(s), connect as shown.

120 ohm termination resistors required at master and last slave on the link.

Use HC Designer software to configure the controller's RS-485 port as a master or slave.

RS-232 Modbus Connections

Connect to the RX, TX, and ground pins of the controller's 3-pin RS-232 port. Table 20 (page 108) identifies the pins. For connections on other device, refer to its product manual.

For multiple devices on RS-232, use an approved RS-232-to-RS-485 converter.

Use HC Designer software to configure the controller's RS-232 port as a master or slave.

Operating Characteristics

Introduction

This section applies to all controllers, that is, non-redundant and redundant. For operating characteristics unique to redundant controllers, see Redundant Operating Characteristics on page 135.

This section provides insights into system functioning that are useful in configuration, in installation /commissioning tasks, and also in normal and abnormal operation. For related information regarding diagnostic indications, how they should be interpreted, and determining appropriate actions, refer to the Diagnostics section in this user manual.

Overview

The HC900 Controller components begin operation as soon as power is applied, and continue until power is removed. The operation of the system varies according to the following interacting factors:

- Power transitions: Power DOWN / Power UP
 - Power DOWN transitions are usually planned and controlled, but in some cases such as power outages, are unintended. To ensure proper operation in either case, the HC900 Controller includes software that controls operation at power restoration. The controller handles a Power-UP transition as one of two types: **Cold Start** or **Warm Start**
- Operating Modes: Program (Locked), Program, Offline, Run, and Run (Locked)
 Operating Modes are selected:
 - by positioning the (Operating) Mode switch on the Controller Module or RSM,
 - by selecting parameters on displays (operator interface, Hybrid Control Designer).

In some cases, mode transitions also restart (Cold Start or Warm Start) controller operation.

• **Results of diagnostics:** in case of system hardware or software fault, the controller automatically alters operation as appropriate for the diagnosed conditions.

Power Down / Power Up

The HC900 Controller is designed to facilitate restoration of process operation after a power outage. The active control configuration is maintained in battery-backed RAM, and the last configuration update performed in the program mode is also stored in Flash memory on the Controller Module. When power is restored, the system automatically enters a diagnostic procedure that checks the integrity of hardware, software, and the control database. Depending on the results of the diagnostic, the controller will execute either a Warm Start or a Cold Start.

Warm Start

A Warm Start is a restart of the control strategy using dynamic data that is stored in battery backed RAM to allow control action to resume exactly as it was before the restart. In the Warm Start procedure (flowcharted in the main flow of Figure 73), diagnostic testing proves the integrity of the hardware, software, and configuration database resulting in an automatic Warm Start of process control. Control action is resumed exactly as it was before the outage.

This flowchart also indicates actions that would be taken by the controller in case of fault. Notice that if primary diagnostic testing determines that RAM or firmware is faulty, all process control functions cease, and the Status LED (red color) strobes one blink, periodically. If RAM and firmware tests pass, but the database in RAM is faulty, the controller initiates the Cold Start operation.

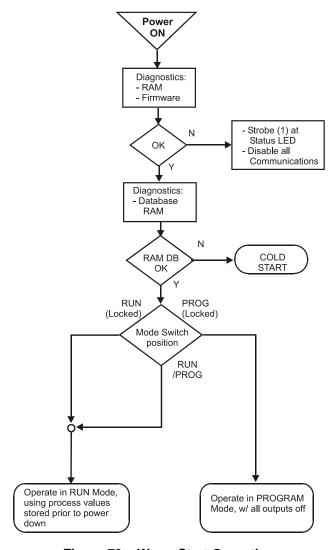


Figure 73 - Warm Start Operation

Cold Start

A Cold Start clears the data in battery backed RAM, turns all outputs off, transfers the configuration file from flash memory to RAM and reinitializes all dynamic data.

The Cold Start procedure is flowcharted in Figure 74. The controller initiates the Cold Start procedure:

- After a power outage, when diagnostics indicate that the controller hardware and software program are intact, but the content of the RAM database is incorrect. (See Figure 73.)
- On a Mode transition from PROGRAM to RUN. (This Mode transition can be initiated by operating the Mode switch on the controller or RSM, or by exiting the Program mode at an operator interface.)
- When initiated by the user (after download with Cold Start selected, or any transition from PROGAM Mode to RUN Mode.)

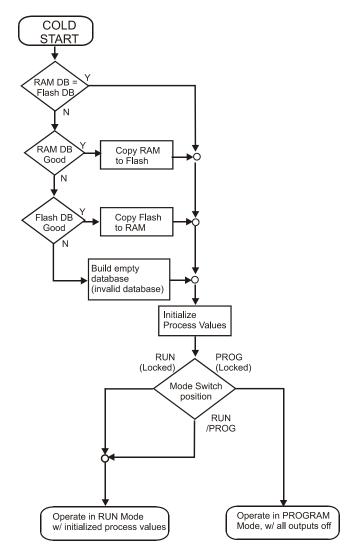


Figure 74 - Cold Start Operation

Execution sequence

- The type of control functions executed during a scan is determined by the system configuration.
 - Controller configurations contain a series of algorithms in the form of function blocks that get
 executed in a fixed sequence. The first 100 function blocks are pre-assigned by the system to handle
 communication tasks, alarm processing, system monitoring functions, etc. and cannot be changed by
 the user. Starting with function block number 101, the user may select the type of function to be
 executed.
- The sequence of function block execution is initially determined by the sequence in which the function blocks are placed on the graphic diagram in HC Designer.
 - Final desired sequence must be set by the user to achieve proper and optimum performance.
 - **GAUTION** Incorrect execution sequences can contribute to delays in processing outputs and/or improper or unexpected operation.
- The HC900 controller samples all inputs before the start of a controller scan.

- Each input being used in the configuration must be assigned to a function block. The sequence order of the function block determines when in time the actual value will be updated. It is important that algorithms that need updated input values for their calculations have the inputs execute first in the sequence.
- · Except for Time Proportioning Output (TPO), Three-Position-Step-Control (TPSC) and Position Proportional Output (PPO) function block types that update their physical output values while the function blocks are being executed, all physical outputs are updated at the end of a scan.

Controller Modes

The HC900 Controller includes three operating modes. The purpose of each mode is described immediately below, and salient characteristics of each are described in Table 23. The functions of the Mode Switch are described in Table 24, and the procedures that the controller performs in transitions between modes are described in Table 25.

PROGRAM Mode

In the PROGRAM Mode, active control processing is suspended. This mode is used for safe execution of utility functions such as configuration download and calibration of analog inputs and outputs.

All outputs are Off.

RUN Mode

The Run Mode is used for normal operation of the controller; that is, for running the control configuration that was previously downloaded. Configuration download and other utility functions can be performed in this mode. See the Hybrid Control Designer User Guide for precautions, restrictions, and procedures.

OFFLINE Mode

The OFFLINE Mode can be entered only from the RUN Mode, and is intended primarily for performing AI calibration.

A CAUTION

Because Function Blocks are not processed and outputs are Frozen in this mode, inputs (that is, process values) can vary from the values that existed when the OFFLINE Mode was entered.

Before entering the OFFLINE Mode:

- KNOW all potential consequences of suspending control action...
- PLAN for all operator actions required to preclude adverse consequences while processing is suspended, and when resuming control processing.
- EXECUTE prudent control actions (such as placing all control loop in the Manual Mode).

Failure to comply with these instructions may result in product damage.

Table 23 - Controller Operating Modes

Mode Name	Functions in selected mode					
RUN	I/O scanning (Controller and Expander Racks)					
	Function block execution; outputs are set according to function block algorithms.					
	Monitoring of Diagnostics (controller rack and I/O expander racks)					
	Detection of I/O Modules					
	Other functions permitted:					
	Downloading of configurations					
	Indications of Forces at Status LEDs on I/O modules					
	Other functions NOT permitted:					
	Al calibration					
	AO calibration					
PROGRAM	I/O scanning (Controller and expansion Racks[C50 CPU only]) is performed, but function blocks are not executed, and all outputs (digital and analog) are set to OFF. (See Note 1.)					
	Monitoring of Diagnostics (Controller and Expander Racks)					
	Detection of I/O Modules					
	Other functions permitted:					
	Al calibration					
	AO calibration					
	Downloading of configurations					
	Downloading controller firmware (Program Locked or Program)					
	Other functions NOT permitted:					
	Indications of Forces at Status LEDs at I/O modules					
OFFLINE	IO scanning (Controller and Expander Racks) is performed, but function blocks are not executed, and all outputs (digital and analog) are Frozen (see Note 2) at the states they were in when the OFFLINE mode was selected.					
	Monitoring of Diagnostics (local and expanded racks)					
	Detection of I/O Modules					
	Other functions permitted:					
	Al calibration					
	Indications of Force at Status LEDs of I/O modules					
	Other function NOT permitted: AO calibration					

Note 1: The Off state of the module outputs are defined as:

- Digital output low state
- Time proportional Output (TPO): 0% duty cycle
- PPO and TPSC Outputs: Both Fwd and Rev are Off.
- Analog output: 0.0 mA

Note 2: The Frozen states of module outputs are defined as:

- Digital output: same state as previous (last active state)
- Time Proportional Output (TPO): Same duty cycle as in last active state
- PPO and TPSC Outputs: digital outputs are Off to freeze the motor position.
- Analog output: same current as previous (last active current level)

Controller Mode Transitions

Mode changes are controlled primarily by positioning of the MODE switch (Figure 75) on the controller module or RSM, and secondarily by selection of mode names on operator interface displays. That is, the Mode switch takes precedence. In the RUN (Locked) position or in the PROG (Locked) position, selecting a mode name at the operator interface has no effect on the operational mode. In the RUN/PROG position, the mode may be changed from any mode to any other mode.

The effects of the Mode switch operator interface selections are described in Table 24. The effects on controller operation for each mode transition are described in Table 25.

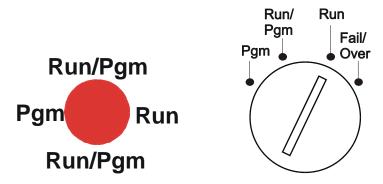


Figure 75 - Mode Switches: Controller (left), RSM (right)

Table 24 - Mode Switch Functions

Mode Name	Mode Selections at Operator Interface	Switch Function
RUN (Locked)	None (locked in RUN)	In this position, the Controller is locked in the RUN mode of operation. Run mode configuration changes are disabled and mode can not be changed at any operator interface.
RUN/PROG	PROGRAM RUN OFFLINE	In this position, the mode can be changed at any operator interface using screen selections PROGRAM, RUN, or OFFLINE.
PROG (Locked)	None (locked in Program)	In this position, the Controller is locked in the PROGRAM mode of operation. Mode can not be changed at any operator interface.
Failover	N/A	Transfers all primary tasks to the Reserve Controller, establishing this controller as the new Lead. Does not affect controller mode. Turn key to Failover and hold it there until both Reserve lights are on, then release key.

Table 25 - Controller Behavior in Mode Transition

Initial Mode	New Mode	Controller Behavior		
PROGRAM RUN		Validate configuration database.		
		Reset all I/O scanners.		
		Upon startup, initiate Cold Start sequence.		
		Diagnostic: Identify and configure all I/O racks and modules. (All output modules are configured with Failsafe values. Any modules not included in the configuration are configured with default values, which causes outputs to be Off.)		
		While in transition, all output modules are Off; when transition procedures are completed, Function Block processing begins, and output values are set to Function Block output values.		
		Any calibration process that was in progress is immediately aborted, and the results are discarded.		
PROGRAM	OFFLINE	Same as PROGRAM to RUN transition, except that Function Blocks are not processed, and outputs remain Off.		
		Any calibration process that was in progress is immediately aborted, and the results are discarded.		
RUN	PROGRAM	Set all channels of all output modules to Off.		
		Set all output module Failsafe values to the Off state.		
		Turn off the LED indications on all output modules.		
OFFLINE	PROGRAM	Same as RUN to PROGRAM transition.		
		Any calibration process that was in progress is immediately aborted, and the results are discarded.		
RUN	OFFLINE	Freeze output module channels.		
		Freeze Force LED indications on all output modules.		
OFFLINE	RUN	Function Block execution starts immediately.		
		Any calibration process that was in progress is immediately aborted, and the results are discarded.		

File Download/Upload Functions

The following is a general description of file transfers between the controller and computer devices external to the controller.

A CAUTION

Performing download procedures incorrectly could cause loss of control in an operating process or loss of data and program files in a controller.

Refer to the appropriate User's Manuals for download/upload procedures.

Failure to comply with these instructions may result in product damage.

Two types of software files can be downloaded to the controller:

- Configuration files
- · Firmware files.

Configuration files can also be uploaded from the controller for archiving. Firmware can only be downloaded to the controller. Pathways for file transactions between the controller and computer devices external to the controller are shown in Figure 76.

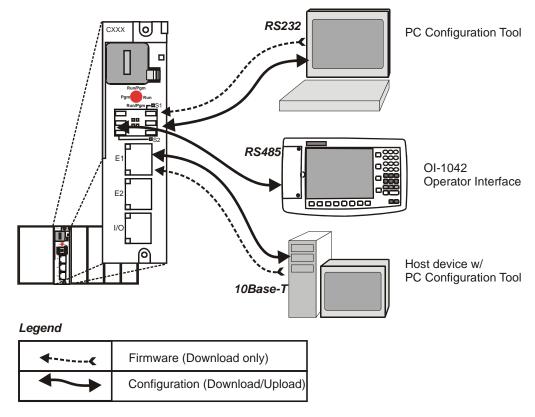


Figure 76 – Pathways for Upload/Download Transactions

Configuration Download

Configuration files include the items indicated in Table 26. Downloading of some items is mode dependent. That is, downloading of some file types is not permitted in the Run mode or in the Offline mode.

Table 26 - Configuration file downloading

Downloading of	Permitted When Controller is in		
Configuration items:	PROGRAM Mode	RUN Mode	OFFLINE Mode
Controller Configuration Files	Yes	Yes/No (Note 1)	No
Setpoint Profiles / Setpoint Schedule	Yes	Yes	Yes
Recipe Files	Yes	Yes	Yes
Data Storage Configuration Files	Yes	Yes	Yes
Data Storage Non-volatile parameters	Yes	Yes	Yes

Note 1 - Controller files can be downloaded with the controller in Run Mode with the Mode switch set to Run/Program, but not with the switch set to Run/Lock.

The download from the host processor is directed to an area of controller memory separate from that used for running the controller, and hence has no effect on the active process.

The host signals the controller when the download is complete, and requests a configuration validation test and report from the controller. The controller then checks the new database and compares it to the current (running) database. Using the test report as a basis, the host then presents the operator (user) with a dialog box containing a set of choices: begin using the new database with no cold start, use it with a re-start, or abort the download.

For downloading procedures, refer to the Operator Interface User Manual #51-52-25-108.

Configuration Upload

Controller configuration files, setpoint profiles, and recipe files can be uploaded for storage and archiving in a PC and/or to a disk in the Operator Interface. Using the PC, the Upload function is accessed from the Hybrid Control Designer.

For details of uploading configuration items, refer to Hybrid Control Designer and Operator Interface manuals.

Firmware Download

Firmware Download provides a mechanism to upgrade the firmware in your CPU and Scanners. It is available in Program or Program Locked modes only. Specific instructions are provided with the upgrade files.

Redundant Operating Characteristics

Overview

This section describes operating characteristics specific to redundant controllers.

In a redundant HC900 system, the Lead Controller performs all primary tasks including interfacing with remote I/O racks, communicating with a local HMI, exchanging data with peer controllers, interfacing with Modbus slave devices, and communicating with a Host PC application. Detection of a fault or removing power from a Reserve Controller will initiate a diagnostic prompt in the Lead Controller, but will have no impact on the process under control. The detection of a fault or removing power from a Lead Controller will initiate failover, that is, transfer all primary tasks to the Reserve Controller, establishing this controller as the new Lead. Following a failover, the new Lead Controller will remain the Lead, even if the condition that caused the failover is corrected.

Start-Up

- Assignment of Lead and Reserve status is determined at start-up
 - First available C70R assumes Lead
 - In case of a tie, CPU mounted in the left position of the rack will Lead
 - No user configuration or manual operations required to establish Lead / Reserve status
- Lead Controller assumes control of I/O and all external communication interfaces.
- Reserve Controller receives the configuration from the Lead Controller

Modes of operation (Figure 77)

The modes of operation are:

- Run
- Run/Program
- Program

You can change modes with:

- · key-switch on the redundancy control module
- · HC Designer software
- · HC Utilities software
- local 1042 or 449 operator interfaces.
- · a command from a supervisory host

Both Lead and Reserve Controllers maintain the same mode. Placing the Lead Controller into the Program mode will also place the Reserve Controller in the Program mode.

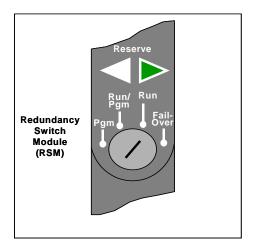


Figure 77 - Modes of operation on RSM

RUN Mode (Locked)

In the Run mode, the controller performs all control and communication tasks needed for steady-state operation. On-line configuration edits and configuration changes are inhibited.

RUN/PROGRAM Mode (Unlocked)

In the Run/Program mode, steady-state tasks are executed and on-line configuration edits are permitted. Configuration changes made in this mode are retained in both RAM and Flash memory in the controller.

PROGRAM Mode (Locked)

In the program mode, all outputs are turned OFF, function blocks do not execute and configuration changes are permitted. Exiting the Program Mode performs a cold-start, which clears all timers, counters, totalizers and other function blocks with residual data. Function blocks are initialized to their initial state with no reference to previous history. Exiting the Program mode updates the RAM and Flash memory of the controller with the most recent configuration data.

Steady State Operations

- Lead Controller issues polls to I/O Racks for inputs
- Both Lead and Reserve read I/O responses from I/O Racks
- Lead and Reserve both execute function blocks in the control strategy
- Only the Lead Controller writes physical outputs to the I/O Racks
- Lead Controller responds to communication messages from host devices on the Supervisory Network and RS-232/RS-485 interfaces
- Lead Controller handles communications with HC900 peers
- Lead Controller handles communications with Modbus RTU slave devices
- Lead and Reserve exchange system status data to determine conditions for failover.
- I/O Scanners relay system status data between each Controller to determine conditions for failover

Execution time

HC900 Controllers are designed to execute control functions within fixed scan cycles for analog data types and logic data types. In redundant controllers, the maximum scan time is 500ms for analog data types and 53ms for logic data types.

Execution sequence

- The type of control functions executed during a scan is determined by the system configuration.
 - Controller configurations contain a series of algorithms in the form of function blocks that get
 executed in a fixed sequence. The first 100 function blocks are pre-assigned by the system to handle
 communication tasks, alarm processing, system monitoring functions, etc. and cannot be changed by
 the user. Starting with function block number 101, the user may select the type of function to be
 executed.
- The sequence of function block execution is initially determined by the sequence in which the function blocks are placed on the graphic diagram in HC Designer.
 - Final desired sequence must be set by the user to achieve proper and optimum performance.
 - **CAUTION** Incorrect execution sequences can contribute to delays in processing outputs and/or improper or unexpected operation.
- The HC900 controller samples all inputs before the start of a controller scan.
 - Each input being used in the configuration must be assigned to a function block. The sequence order
 of the function block determines when in time the actual value will be updated. It is important that
 algorithms that need updated input values for their calculations have the inputs execute first in the
 sequence.
- Except for Time Proportioning Output (TPO), Three-Position-Step-Control (TPSC) and Position Proportional Output (PPO) function block types that update their physical output values while the function blocks are being executed, all physical outputs are updated at the end of a scan.

Lead/Reserve controller synchronization

- Lead Controller automatically synchronizes the Reserve with the configuration database
 - During download of a configuration from a Host to the Lead
 - During process operation to bring a Reserve Controller from the Unavailable state to the On-Line state
- Lead Controller automatically synchronizes the Reserve with run-time data during each function block execution cycle
- Both the Lead and Reserve Controllers execute the function blocks in the control strategy, but only the Lead Controller writes the physical outputs to the I/O Racks. See Figure 78.
- The Lead and Reserve controllers exchange system status to determine conditions for failover.

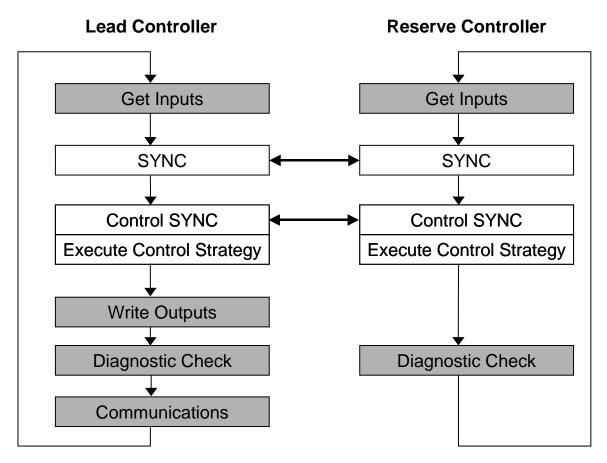


Figure 78 - Lead/Controller synchronization

Failover

Automatic Failover

- Triggered on any of the following conditions of the Lead Controller:
 - Loss of communications with I/O Rack(s)
 - Processor exception conditions
- Error conditions that occur in the following areas will not cause a failover:
 - Loss of communications to a Host on a network
 - Loss of communications to Modbus Slave devices
 - Loss of communications to Operator Interface
 - Loss of communications with a Peer controller
- During the transition from the Lead to the Reserve, analog and digital output status is maintained at the I/O racks.

Manual Failover

- Via Key Switch on the Redundancy Switch Module in the Redundant Controller Rack. When doing manual failover with keyed switch, turn key to Failover and hold it there until both Reserve lights are on, then release key.
- Via Software Command from HC Designer & HC Utilities PC Software
- Via Software Command from Modbus / TCP & Serial Modbus RTU Hosts
- Via Software Command from OI-1042 & OI-559 Operator Interfaces

Failover Performance

Failure condition detection and failover from Lead to Reserve CPU executed in 4 analog control cycles or less.

Redundancy Diagnostic Monitoring

- From HC Designer and HC Utilities PC Software
 - Redundant System Status current status of Lead/Reserve Controller CPU's
 - On-Line Monitoring, Controller Diagnostics, Communications Loop-Back tests
 - Redundant Link Status status of communications between Lead and Reserve controllers.
 - Lead CPU status
 - Reserve CPU status
 - Scanner status

File Download/Upload Functions

See page 133.

Diagnostics and Troubleshooting

Overview

The HC900 system incorporates a comprehensive set of diagnostic tools that test hardware and software operation. Diagnostic software elements are contained in each system component. The diagnostic elements that are executed at any given time depend on operating conditions such as current operating mode and the current status of hardware and software. As long as power is applied, each major component of the controller will execute one or more diagnostic elements.

Diagnostics have two functions; they:

- Automatically alter system operation to react appropriately to operating conditions (particularly in the event of a system fault).
- Provide external indications that enable operating and maintenance personnel to react appropriately when external actions are required.

External Indications of Diagnostic Information

The following diagnostic indicators are provided.

• Light Emitting Diodes (LEDs) included in controller hardware. Locations of LEDs are shown in the following figures and tables. The LEDs are useful when personnel are performing troubleshooting activities solely at the controller. Also, they are useful for verifying indications viewed as screen items.

LED indicators	See page
Controller CPU indicators	142
Scanner indicators	150
I/O Module Indicators	154
Ethernet Switch indicators	157

- · Screen items on:
 - The Operator Interface connected to the RS-485 port. See Operator Interface manual 51-52-25-108.
 - A PC with Hybrid Control Designer/Hybrid Control Utilities connected to the controller module via the RS-232 port or the Ethernet 10Base-T Open Connectivity port. See the Diagnostics section in the application's help.

Controller CPU indicators

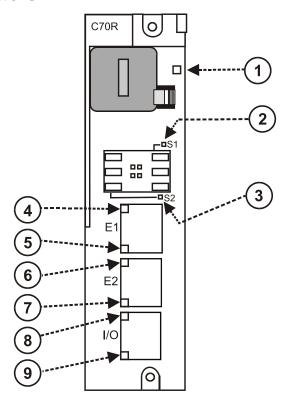


Figure 79 – LED Indicators on Controller CPUs (See Table 27)

Table 27 – LED Indications on Controller CPUs

CPU model	Figure 79 item	LED	LED State/Color	Description
All	1	Controller Status	Off	No power.
models			Solid Red	Failed
			Blinking Yellow	Failed
			Blinking Red	(Diagnostic Code; refer to Table 28.)
			Solid Green	PROGRAM Mode
			Blinking Green	RUN Mode
			Solid Yellow	OFFLINE Mode
All models		RS-232/RS-485 S1 port		
	2	XMT/RCV	Yellow/Green	Yellow when transmitting, green when receiving.
All models		RS-232/RS-485 S2 port		
	3	XMT/RCV	Yellow/Green	Yellow when transmitting, green when receiving.
All		E1 port		
models	4	Upper LED	Yellow (On/Off)	On for 100Base-T, Off for 10Base-T
	5	Lower LED	Green (On/Off/Flash)	On for connection, Off for no connection, Flash for activity
C70		E2 port		
C70R	6	Upper LED	Yellow (On/Off)	On for 100Base-T, Off for 10Base-T
	7	Lower LED	Green (On/Off/Flash)	On for connection, Off for no connection, Flash for activity
C50		I/O port		
C70 C70R	8	Upper LED	Yellow (On/Off)	On for 100Base-T, Off for 10Base-T
C/UK	9	Lower LED	Green (On/Off/Flash)	On for connection, Off for no connection, Flash for activity

Controller Status LED Diagnostic indicators

When the Controller Status LED (Figure 79 on page 142, item 1) is flashing red, consult Table 28.

Hazardous voltages exist in the equipment enclosure.

- Identify and avoid contact with voltage sources.
- Disconnect power before servicing. (More than one switch may be required to disconnect all power.)

Failure to comply with these instructions could result in death or serious injury.

Table 28 - Controller Status LED Diagnostics

Number of Red Strobes	Possible Causes	Lead and/or Reserve Controller Action(s)	User Action	Honeywell Ol Indication	HCDesigner/HC Utilities Indication
1	RAM or ROM failed on power-up.	control are disabled.	 Cycle power Replace CPU Replace power supply Replace rack Check grounding Ensure system is properly isolated from noise 	Not available because the C70R communication ports are disabled.	Not available because the C70R communication ports are disabled.
2	At least one function block has an output that is forced.	The block's output(s) is/are forced to the value(s) specified.	If it is not desirable to have forced block outputs, use HCDesigner to locate and remove the forced outputs.	See SYSTEM in the "Controller Diagnostics Overview" display.	See System Diagnostics in the "Diagnostic Overview" dialog box.
2	The RAM and FLASH copies of the configuration database were corrupted and are now set to a valid empty database. Usually this is a result of a firmware upgrade.	An empty database is created, and the lead and reserve will not synchronize. The reserve's RSM LED is flashing to indicate it's not synchronized with the lead.	Use HCDesigner, HCUtilities, or OI to download a valid configuration.		
	One of the following RSM failures was detected: 1. The RSM module is not installed. 2. The RSM switch position is invalid. 3. The lead and reserve switch positions do not agree.	reading and dictates to the reserve what the mode is. If the lead's switch position is invalid, then the lead uses the last good known position prior to the failure. If failover occurs, the new lead will assume the mode prior to failover until a good switch reading is acquired. If after the power is cycled to both the lead and reserve, and the lead is unable to acquire a valid switch position, the system will default to the run-program mode of operation.	MAKE SURE THE SWITCH IS IN THE PROPER STATE PRIOR TO INSERTION. 2. If the key is installed in the RSM, remove it to make sure the switch is seated properly. If the key does not pull out, turn it slightly to the proper position until it can be removed.		

Number of Red Strobes	Possible Causes	Lead and/or Reserve Controller Action(s)	User Action	Honeywell Ol Indication	HCDesigner/HC Utilities Indication
2	There are slave blocks in the configuration, and no communication port is configured as a Modbus master.	FSYS blocks turn on. • All Modbus slave and Modbus	Use the OI, HCDesigner, or HCUtilities to configure one of the serial ports (S1 or S2) as a master. Use the OI, HCDesigner, or HCUtilities to download a configuration that has no slave blocks.		
3	One of the following microprocessor exceptions occurred: Watchdog timer timeout Address error Prefetch error Data abort error Software interrupt Undefined instruction error	no lead is present. This diagnostic will cause the HWOK pins of the AYSY and FSYS	To clear the diagnostic, force a cold start. If the problem reoccurs, try the following: 1. Ensure the system is properly grounded 2. Ensure the system is properly isolated from external noise sources 3. Upgrade the firmware 4. Replace the CPU board. 5. Contact Honeywell Personnel.	If the lead's status LED is indicating the failure, see CPU in the "Lead CPU Diagnostics" display. If the reserve's status LED is indicating the failure, see CPU in the "Reserve CPU Diagnostics" display.	If the lead's status LED is indicating the failure, see CPU Diagnostics in the "Lead Diagnostics Overview" dialog box. If the reserve's status LED is indicating the failure, see CPU Diagnostics in the "Reserve Diagnostics Overview" dialog box.
3	One of the exception vectors located in RAM became corrupted.	The exception vector was automatically corrected in the controller's RAM and the controller continues to operate normally. This diagnostic will cause the HWOK pins of the AYSY and FSYS blocks to be turned off.			
4	Estimated battery life is less than 5 days.	ASYS and FSYS blocks' HW OK pins are turned off. Firmware upgrade is still permitted.	Replace battery.	If the lead's status LED is indicating the failure, see MEMORY in the "Lead CPU Diagnostics" display. If the reserve's status LED is indicating the failure, see MEMORY in the "Reserve CPU Diagnostics" display.	If the lead's status LED is indicating the failure, see Memory Diagnostics in the "Lead Diagnostics Overview" dialog box. If the reserve's status LED is indicating the failure, see Memory Diagnostics in the "Reserve Diagnostics Overview" dialog box.

Number of Red Strobes	Possible Causes	Lead and/or Reserve Controller Action(s)	User Action	Honeywell OI Indication	HCDesigner/HC Utilities Indication
4	Battery voltage is low.	ASYS and FSYS blocks' LOWBTRY pins are turned on. ASYS and FSYS blocks' HW OK pins are turned off. Firmware upgrade is inhibited until both the Lead and Reserve batteries are good.	Replace battery.		
4	Flash failed to burn	ASYS and FSYS blocks' HW OK pins are turned off.	Force a cold start If diagnostic does not clear, replace CPU module.		
5	The Real-time Clock (RTC) is not programmed. This is usually a result of the lead's battery failing when it was powered-down.	 On power-up, time and date is initially set to 00:00:00, January 1, 1970 on both the lead and the reserve. ASYS and FSYS blocks' HW OK pins are turned off. Note: If the reserve's battery fails when it is powered-down. The lead will automatically program the reserve's RTC with the correct date and time when the lead and reserve are synchronized. 	Use HCDesigner, HCUtilities, or OI to program the real-time clock (RTC).	If the lead's status LED is indicating the failure, see RTC in the "Lead CPU Diagnostics" display. If the reserve's status LED is indicating the failure, see RTC in the "Reserve CPU Diagnostics" display.	If the lead's status LED is indicating the failure, see Real-Time Clock Diagnostics in the "Lead Diagnostics Overview" dialog box. If the reserve's status LED is indicating the failure, see Real-Time Clock Diagnostics in the "Reserve Diagnostics Overview" dialog box.
5	One of the following RTC conditions occurred: RTC was previously programmed, but when it was last read, its date and time were deemed invalid. An attempt was made to program the RTC, but it was unsuccessful. The RTC is unable to be read. Usually indicating a serious hardware failure.	Same actions as described above.	Use HCDesigner, HCUtilities, or OI to program the real-time clock (RTC). If problem persists, replace the CPU module		

Number of Red Strobes	Possible Causes	Lead and/or Reserve Controller Action(s)	User Action	Honeywell OI Indication	HCDesigner/HC Utilities Indication
6	One of the following remote I/O conditions exist: Communications between the CPU and a Scanner 2 is failing. Scanner 2 is unable to communicate to a module or a wrong module is installed. A module in the I/O rack is reporting a diagnostic. C70R and Scanner 2 firmware versions are incompatible. Scanner 2, I/O rack, or powersupply is defective. C70R module is defective. A bad channel has been detected on one of the modules.		Locate the Scanner 2 that has a status LED indicating a diagnostic, and follow the scanner 2 diagnostic section to solve the problem.	See the associated rack's "Rack Diagnostics Overview" display for details regarding the diagnostic.	See "Rack Diagnostics" dialog box.
6	High temperature condition in a Scanner 2 rack has been detected.	1. Associated AI blocks that are configured as T/Cs set their fail pin on, their warn pin off, and their output pin to the failsafe value. 2. Associated AI blocks that are configured as T/Cs set their IO status to either: "CJ High Temperature" if one of the two CJs on an AI card is indicating a temperature greater than 70 degrees C "CJ Failure" if both CJ sensors are failing to convert. 3. Associated rack monitor block's module fail pin is turned on. 4. Associated rack monitor block's RACK OK pin is turned off. 5. Associated rack monitor block's HITEMP pin is turned on. 6. ASYS and FSYS blocks' HITEMP pins are turned off.			
6	Scanner 2 has a CPU or Memory diagnostic.	Associated rack monitor block's RACK OK pin is turned off. ASYS and FSYS blocks' HW OK pins are turned off.		See CPU or MEMORY in the associated rack's "Rack Diagnostics Overview" display.	See CPU or Memory in "Rack Diagnostics" dialog box.

Number of Red Strobes	Possible Causes	Lead and/or Reserve Controller Action(s)	User Action	Honeywell OI Indication	HCDesigner/HC Utilities Indication
7 8 or 9	a bad power supply.	Associated rack monitor block's RACK OK pin is turned off. ASYS and FSYS blocks' HW OK pins are turned off. ASYS and FSYS blocks' HW OK pins are turned off.	Locate the Scanner 2 that indicates a bad power-supply diagnostic, and replace the defective supply. 1. Check baud rate	See POWER SUPPLY DIAGNOSTICS in the associated rack's "Rack Diagnostics Overview" display.	See Power Supply Diagnostics in "Rack Diagnostics" dialog box.
	diagnostic. If 9 flashes, the S2 serial port is reporting a diagnostic. Possible causes are: If the port is configured as a Modbus or ELN slave, the data link layer is reporting that at least 75% of the last characters received have had a failure reported by the UART or at least 75% of the last messages received have been invalid. If the port is configured as a Modbus Master, at least 75% of the last requests to a particular slave resulted in no response or a reply that failed the data link protocol.	 If configured as a Modbus master: ASYS and FSYS blocks' Modbus Master Fail pins are turned on. Slave and read blocks associated with the slaves experiencing the failure have their read pins frozen to the last value read. Slave blocks associated with the slaves experiencing the failure have their BAD COMM and NO SCAN pins turned on. IN SCAN STATUS is set to NO for all slaves experiencing the failure. COMM STATUS is set to BAD for all slaves experiencing the failure. The slaves with the data link errors have a non-zero data link error count. The slaves experiencing the failure are moved to the background scan rate. 	experiencing the problem. For those slaves check: Power Connections address baud rate parity number of stop bits for electrical interference grounding termination resistor (if at end of link) The diagnostic is cleared by clearing the port's statistics.		
	The UART failed its power-up tests	See above	Replace CPU module		

Number of Red Strobes	Possible Causes	Lead and/or Reserve Controller Action(s)	User Action	Honeywell Ol Indication	HCDesigner/HC Utilities Indication
10	Ethernet port tests failed during power-up.	 E1 or E2 port diagnostic is set toe FAILED. ASYS block's HW OK pin is turned off. 	Replace CPU module.	If the lead's status LED is indicating the failure, see NETWORK PORT E1 or NETWORK PORT E2 in the "Lead CPU Diagnostics" display. If the reserve's status LED is indicating the failure, see NETWORK PORT E1 or NETWORK PORT E2 in the "Reserve CPU Diagnostics" display.	If the lead's status LED is indicating the failure, see Lead Port E1: Network Port Diagnostics or Lead Port E2: Network Port Diagnostics in the "Lead Diagnostics Overview" dialog box. If the reserve's status LED is indicating the failure, Lead Port E1: Network Port Diagnostics or Lead Port E2: Network Port Diagnostics in the "Reserve Diagnostics Overview" dialog box.

Scanner indicators

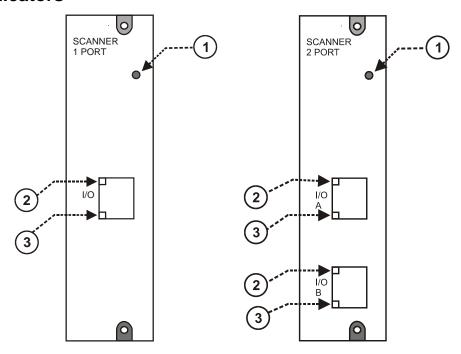


Figure 80 – LED Indicators on Scanners—1 port (left), 2 port (right) (See Table 29)

Table 29 - LED Indications on Scanner Module

Figure 80 item	LED	LED State/Color	Description	
1	Scanner Status	Off	No power	
		Solid Red	Failed	
		Blinking Red	(Diagnostic Code; refer to Table 30 - Scanner LED Diagnostics.)	
		Solid Green	Startup Mode	
		Blinking Green	Scan Mode	
	10Base-T port			
2	XMT (upper LED)	Green (On/Off)		
3	LINK (lower LED)	Green (On/Off)	On while a message is being sent from the Main CPU; otherwise Off.	
			On while the Main CPU is receiving a message. Remains On as long as host is present; Off when the host is removed from the link.	
		NOTE: These LEDs indicate activity on the communication port, they are controlled by hardware (PHY chip), not by software.		

Scanner Diagnostic LED Indication

The scanner uses its LED to communicate diagnostic information. These diagnostics are a subset of the main CPU's and are listed below.

Table 30 – Scanner LED Diagnostics

Number of Strobes	Possible Cause	Scanner Action	Us	ser Action
1	RAM or ROM failed diagnostics on	Executes an infinite loop that toggles the LED.	1.	Cycle power
	power-up.	Communications and module scanning are disabled. Module outputs are in the power-off	2.	Replace scanner
		state DO outputs are off, and AO outputs	3.	Replace rack
		are at zero milliamps.	4.	Check grounding
			5.	Ensure system is properly isolated from noise
2	The scanner has no configuration data because it is unable to communicate to the controller	Modules are not scanned and the outputs are either at failsafe or in the power-down state. If communication was lost while the modules	1.	Verify that the address switches on the scanner are set correctly.
	CPU. Possible causes include:	were being scanned, then the module outputs are in their failsafe state. If communication was never established to the Scanner, then	2.	C70R only: Verify that the CPU A cable is connected to
	Scanner address switches are not correctly set.	the module outputs are in the power-off state.		the A port, and the CPU B cable is connected to the B port on the Scanner 2.
	C70R only: The C70R I/O port is connected to the wrong Scanner 2 I/O port.	3.	If a switch is used, check that all cables are properly connected to the switch,	
	If a switch is used, there may be a problem with it.			proper crossover cables are used, that the switch is
	Cables are defective or are not properly shielded.			powered, and it supports 100 Base-T.
	5. Controller CPU is not powered.		4.	Check cable shielding for proper grounding and noise
	6. Controller CPU and Scanner			immunity.
	firmware versions are incompatible.		5.	Make sure the cables have the correct pinout.
	7. Defective Controller CPU, Scanner, power supply, or rack.		6.	Cycle power to the Scanner.
	., ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		7.	Cycle power to the switch.
			8.	Cycle power to the controller CPU.
			9.	Replace the expansion rack's scanner module.
			10.	Ensure that the Scanner and and Controller CPU software versions are compatible. If not, perform a firmware upgrade.
			11.	Replace the expansion rack's power supply.
				Replace the expansion rack.
			13.	Replace the main CPU.

Number of	Possible Cause	Scanner Action	User Action
3	One of the following microprocessor exceptions occurred: • Watchdog timer timeout • Address error • Prefetch error • Data abort error • Software interrupt	Scanner restarts. The main CPU detects that the Scanner restarted, and places the Scanner back into the scan mode.	Cycling power to the scanner will clear the diagnostic. If the problem reoccurs, try the following: 1. Ensure the system is properly grounded. 2. Ensure the system is properly isolated from external noise sources.
	Undefined instruction error		 Upgrade scanner firmware Replace scanner module Contact Honeywell Personnel.
3	One of the exception vectors located in RAM became corrupted.	The vector is restored to the proper value and the Scanner continues to operate normally.	
4	Flash failed to burn properly when the firmware was being upgraded.	The boot code is the only software running. This software waits for a request to burn the flash. It does no scanning of modules. Module outputs remain in their off state.	Do a code download.
5	C70R only. The communications with the reserve is failing for the following reasons: 1. There is a problem with the connection between the scanner and the reserve. 2. The scanner port used to communicate to the reserve has a hardware failure	C70R only. This problem may cause ondemand failover attempts to be unsuccessful.	 C70R only: Verify that the CPU A cable is connected to the A port, and the CPU B cable is connected to the B port on the Scanner 2. If a switch is used, check that all cables are properly connected to the switch, proper crossover cables are used, that the switch is powered, and it supports 100 Base-T. Check cable shielding for proper grounding and noise immunity. Make sure the cables have the correct pinout. Cycle power to the Scanner 2. Cycle power to the reserve. Replace the expansion rack's scanner module. Ensure that the Scanner 2 and and reserve software versions are compatible. If not, perform a firmware upgrade. Replace the expansion rack's power supply. Replace the expansion rack. Replace the expansion rack.
6	The modules installed do not agree with those required by the configuration.	No action is taken.	Verify that the correct modules are installed for the configuration.

Number of Strobes	Possible Cause	Scanner Action	User Action
6	The Scanner cannot communicate to a module or the module is experiencing a diagnostic condition.	No action is taken.	For each module with a red blinking LED, follow the actions described in the I/O Module Diagnostic Indication, page 155.
6	An AI module's CJ temperature reading is indicating a thermal problem. The scanner determines this problem not the AI module; therefore, the module's status LED will not indicate this diagnostic.	No action is taken.	Improve ventilation to rack Replace Al module
	Possible reasons for this diagnostic are:		
	One of the two CJs on the module is indicating a temperature reading greater than 70 degrees C.		
	Both cold-junction sensors are failing to convert.		
	The CJs are converting properly, but their differential is greater than 10 degrees C.		
6	The scanner determined that a module has a bad channel. In this condition, the module's status LED will not indicate the failure because the Scanner determines the condition, not the module itself.	No action is taken	Refer to the Bad I/O Channel Diagnostics on page 156 to determine the nature of the problem and possible user actions.
7	One of the power-supplies failed.	No action is taken	Replace the power-supply

I/O Module Indicators

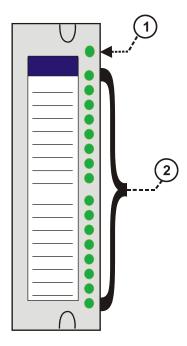


Figure 81 – I/O Module LED indicators

Table 31 - LED Indications on I/O Module

Figure 81 item	LED	LED State/Color	Description
1	Module Status	Off	No power.
		Solid Red	Hardware failure
		Blinking Red	Diagnostic Code; refer to Table 32 - I/O Module LED Diagnostics.
		Blinking Yellow	At least one output is Forced.
		Solid green	Cold start with passing diagnostics
		Blinking Green	Normal scanning
2	Channel LEDs		
	(one per input or output)	Green (On/Off)	For Inputs, indicates On or Off status of the field input even if Forced to the opposite state.
			For Outputs, indicates On or Off status of the output including if Forced.

I/O Module Diagnostic Indication

To indicate the type of diagnostic failure, the module's status LED is flashed red with a number of quick strobes followed by a long off time. Table 32 outlines the potential module diagnostics.

Table 32 - I/O Module LED Diagnostics

Number of	Failure	Description	Al	AO	DI			DO		PFC		UserAction
Strobes					Contact	AC	DC	Relay	AC	DC		
1	FAILSAFE	The module is in the failsafe state because it is not receiving message requests from the CPU or Scanner at a rate that satisfies the configured failsafe timeout.	√	√	√ ·	~	7	~	√ ·	√ ·	√	 If expansion I/O rack, go to step 2. If no expansion I/O rack, go to step 3. Check the Scanner status LED (see p. 150). If it's flashing 6 times, proceed with step 3. If it's flashing some other red status code, refer to Table 30 to solve that problem first. If it's flashing green, the module probably is not required in the configuration. If it's not on or steady, cycle power to the scanner. Make sure the module is the correct one for the configuration. Remove the module and check for a bent pin, then reinsert the module Replace the modules and replace one at a time until the problem reoccurs. Most likely the last module inserted needs to be replaced. Replace the rack.
2	EAROM	EA ROM Failed its checksum	1	1								 Remove/reinsert module. Replace module.
3	RAM		1	1	√	V	V	V	$\sqrt{}$	$\sqrt{}$	V	
4	ROM			V	V	$\sqrt{}$	V	V	$\sqrt{}$	$\sqrt{}$		
5	+24V		√	√	√			1				 Remove the module and check for a bent pin, then reinsert the module Measure power supply voltage. If not correct, replace power supply. Replace module Replace rack
6	FACTORYCAL	CRC failure of primary and backup factory calibration	√	√								Replace module.
7	FIELD CAL	CRC failure of field calibration values	1	1								 Remove/reinsert module. Replace module.
8	HARDWARE	General Hardware Failure (Al=convertor not working)	√									Replace module.
9	HW/SW Key	The software residing on the module does not match the module type. This diagnostic should only result in the factory.			1	√	V	√		√		Replace module
11	Shift Register	The loopback test of the shift register failed.			√	√	√	√	√	V		Replace module

Bad I/O Channel Diagnostics

Individual channels on I/O modules indicate their diagnostics by 6 flashes on the Scanner and CPU; the channel's LED does not indicate a diagnostic. Table 33 is a list of conditions that can cause a bad channel diagnostic.

Table 33 - Bad I/O Channel Diagnostics

Module Type	Failure message indicated on Honeywell OI or Honeywell HCDesigner/Utilities function block monitor	Description	User Action
Al	Burnout Failure	The sensor – T/C, RTD, or mV source is failing burnout checks.	Check terminal block connections Replace source element Replace module.
	Under range	The signal at the terminals is less than 10% below the range of the sensor.	Check the signal level being applied to the terminals. Replace module.
	Over range	The signal at the terminals is more than 10% over the range of the sensor.	Check the signal level being applied to the terminals. Replace module.
	Failing to convert	When attempting to take a reading, the ADC fails. This could result if the incoming signal is either too large or small. It also could result if the ADC circuit is failing. If the problem is the ADC circuit, most likely other channels will have the same failure.	Check the signal level being applied to the terminals. Replace module.
AO	Bad Channel	The board indicates that the channel is failing to output the correct value.	Check terminal connections. Replace module.
DO	Bad Channel	The number of configured channels in the DO function block exceeds the number of hardware channels on the DO card.	Reconfigure the DO function block. Replace DO card with correct number of channels.

Ethernet Switch indicators

Table 34 - LED Indications on Ethernet Switch

LED	LED State/Color	Description	
10Base-T port			
XMT (upper LED)	Green (On/Off)	On while a message is being sent from the Main CPU; otherwise Off.	
LINK (lower LED)	Green (On/Off)	On while the Main CPU is receiving a message. Remains On as long as host is present; Off when the host is removed from the link.	
	NOTE: These LEDs indicate activity on the communication port, they are controlled by hardware (PHY chip), not by software.		

Analog Calibration

Overview

All calibration data for Analog Input Modules and Analog Output Modules is stored in non-volatile memory in the I/O modules. Calibration data is stored for each channel of each AI or AO module. Calibration data for each channel can be either:

- Factory calibration, which is stored permanently in the module, and
- Field Calibration, which is entered from an HMI (OI- on the RS-485 Port, and/or a PC on the RS-232 Port and/or the Ethernet 10Base-T Port using Hybrid Control Designer software.

A field calibration procedure consists of two parts:

- Connecting a calibration device to each channel of an AI or AO module, and
- Using the Operator Interface, HC Designer, or HC Utilities to select actions and enter custom calibration data values calibration into the I/O module.

This section contains information and instructions for connecting calibration devices.

A WARNING

Hazardous voltages exist at the Power Supply and at the terminal boards on I/O Modules

Only trained and authorized personnel should perform the procedures in this section.

Failure to comply could result in death or serious injury.

ATTENTION

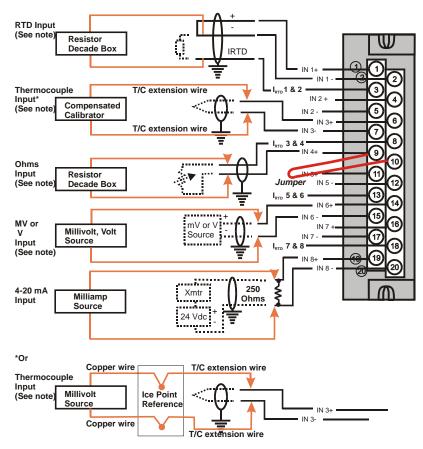
For calibration procedures, refer to the Operator Interface manual or Hybrid Control Designer manual.

Analog Input Calibration

Analog input modules can accommodate five input types:

- RTD*
- Thermocouple*
- Ohms*
- Volt
- milliVolt*
- 4-20 mA

Calibration values for each channel are stored in the module as numeric values paired with A/D conversion counts corresponding to those numeric values. The numeric values are those identified as 'REFERENCE' on the OI or HCD calibration displays; apply these values to the input terminals during the calibration procedure.


For AI channels configured as thermocouple inputs, the stored calibration values are compensated by the measured temperature of the terminals. Because of this observe the following rules:

- If you plan on calibrating the 2 cold junction compensation devices, perform this operation first before
 performing any thermocouple calibrations. However, because cold junction measurement inaccuracies
 will be compensated in each individual thermocouple calibration, cold junction calibration may be
 skipped.
- After connecting the thermocouple extension wire to the terminals, you must wait for the terminal temperature to stabilize.
- If using a compensated calibrator, input the equivalent simulated temperature values corresponding to
 the REFERENCE mV values. These will be the hi and low range values for the particular thermocouple
 configured.

Figure 82 is an adaptation of the wiring diagram given in the installation section of this manual. This figure indicates how a calibration device can be connected to the appropriate terminals of an analog input module. The calibration device(s) must have the following precision characteristics:

- TC, mVolts, Volts inputs: 1 microvolt resolution
- Ohms, RTD inputs: .01 ohm resolution
- 4-20mA inputs: 4 microamp resolution

^{*}Not available on high level analog input modules.

Note: The following AI types are not available for High Level Analog Input modules: RTD, Thermocouple, Ohms, mV

Figure 82 – Terminal Board Connections for Al Calibration

Analog Output Calibration

Analog output modules have essentially one output type.

A diagram of a precision ammeter connected to the terminals of an Analog Output module is given in Figure 83. The specifications of the meter must be consistent with calibration requirements.

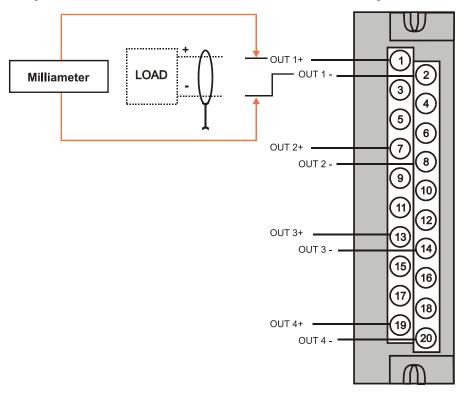


Figure 83 – Terminal board Connections for AO Calibration

Removal and Replacement Procedures

Overview

This section contains procedures for removing and replacing the active components of an HC900 Hybrid Controller. It also includes recommendations, suggestions, and hints as they apply to the circumstances under which the procedures are used.

Safety Considerations - PLAN AHEAD!

When using the procedures in this section, plan the sequence of procedural actions so as to ensure:

- · The safety of personnel
- The protection of property
- The integrity of operating processes

The first consideration is safety of personnel. While there is always an inclination to preserve the materials and time invested in a running process, no action should ever be taken that would risk injury to personnel.

Protection of personnel property is an important consideration that always requires comprehensive knowledge of the entire control process: the control equipment, the process control strategy, and the conditions and circumstances that exist when the removal and replacement procedures are taken.

The procedures in this section include notices of potential hazard as they apply to various components in the controller. Because each control process and the set of conditions and circumstances at each user site are unique, it is the user's responsibility to know the potential consequences of each action as it relates to a running process.

It is recommended that the user becomes familiar with the significant aspects of each set of circumstances and has a plan for execution of the proper action sequence.

A CAUTION

All of the modules (input, output, RSM, PSM) available for use in the HC900 Controller have a RIUP designation. That is, they can be Removed and Inserted Under Power, where "power" refers to DC power at the backplane of the rack. (It does *not* refer to power for field wiring at the terminal board associated with the I/O module, which *must* be disconnected (using a user-supplied switch) at the field device before removing or inserting the module.

For all other components of the controller, AC power to the controller must be removed before removal or replacement of the component.

Hazardous voltages exist at the Power Supply and at the terminal boards on I/O Modules

- Only trained and authorized personnel should perform the procedures in this section.
- Disconnect all sources of power associated with these components before removal or insertion.

Failure to comply with these instructions could result in death or serious injury.

EXPLOSION HAZARD Class 1, Division 2 Installations

SUBSTITUTION OF COMPONENTS MAY IMPAIR SUITABILITY FOR CLASS I, DIVISION 2.

EXPLOSION HAZARD

Class 1, Division 2 Installations

DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN SWITCHED OFF OR THE AREA IS KNOWN NOT TO BE HAZARDOUS.

Replacing the Power Supply

The power supply for the HC900 Hybrid Controller is available in two models and is used in the local (controller) rack and in the remote (I/O expansion) racks, in 4-, 8-, and 12-module sizes. This reduces required inventories of spare parts, and also simplifies removal and replacement procedures.

Removing the power supply from a rack will remove all DC voltages from the rack that powers the Controller Module or Scanner Module, and from all I/O modules within the rack.

NOTE:

The power supply includes an internal fuse, rated at 5 amperes. This fuse is not replaceable in the field. If desired, the user can provide an external fuse that has a current rating lower than that of the internal fuse. See page 57.

Table 35 – Power Supply Replacement (all except C70R)

Step	Action			
1.	ATTENTION: This procedure does not apply to C70R power supplies.			
	If the power supply to be replaced is powering a rack that is currently controlling a running process, then:			
	Either:			
	 Ensure that powering the rack down will not have adverse consequences on any running process. 			
	Or:			
	Bring the process to a safe and orderly shutdown.			
2.	Using an external, user-supplied switch, disconnect the power supply from the source of site AC power. Use a meter to ensure that power is off.			
3.	Depending on the type of wire lugs used, loosen or remove the three screws on the terminal board, and remove the three wires from the terminal board.			
	NOTE : DO NOT remove the nut that secures the lug for the PE Ground wire (green) to the grounding stake at the bottom of the rack.			
4.	At the top and bottom of the module, loosen the captured screws that secure the module in the rack, and remove the power supply from the rack.			
5.	Place the new power supply in the rack. (cont'd)			

Step	Action	
6.	Secure the lugs for AC wiring to the terminals on the new power supply.	
	L1 (top terminal) - Black (USA) or Brown (Europe)	
	L2 /N (middle terminal - White (USA) or Blue (Europe).	
	Ground (bottom terminal)	
7.	Ensure power can be applied safely, and use the external (user-supplied) switch to re-connect power to the power supply.	
8.	Using a meter and the test points on the face of the power supply, ensure that voltages (measured on the backplane) are within specifications.	

Replacing the Controller Module

Removing and replacing the Controller Module requires that that the source of AC power is removed from the rack. Removing power from the Controller rack has the following consequences:

- · All control action stops
- All power to all I/O modules in the rack is lost; hence all control outputs to the process are lost. Because external power connected to terminal boards (from or to field devices) will still be present, it is essential that field devices are maintained in a safe condition during replacement procedures.
- Control to all I/O expansion racks is lost. If power is available to the expansion racks, outputs go to configured Failsafe values.

C70R module

- Does not impact the other C70R CPU module, which will continue to control the process
- Contains start-up diagnostics after replacement to verify proper operation
- If there is a Lead Controller, the configuration database is automatically copied from the Lead to the newly replaced C70R CPU module.

Before replacement:

- (If possible), upload and SAVE a copy of the configuration, or ensure that a previously SAVEd copy of the current configuration is available.
- (If possible), bring the process to a safe and orderly shutdown.

Table 36 - Controller Module Replacement

Step	Action
1.	If a process is currently in operation, bring it to a safe and orderly shutdown.
2.	Using an external (user-supplied) switch, disconnect the power supply in the Controller rack from the site AC power source.
3.	Observe where communications cables are plugged into the Controller Module, and if necessary, tag them to identify their functions. Unplug all communications cables.
3.	At the top and bottom of the module, loosen the captured screws that secure the module in the rack, and remove the Controller Module from the rack.
4.	Ensure that the new Controller Module is properly aligned with the slot guides, insert the new Controller Module in the rack, and secure it in place with the captured screws at top and bottom of the module.
5.	Re-install communications cables.
6.	Using the (user-supplied) switch, re-connect site AC power to the rack.
7.	If using the Ethernet port for configuration, use the Hybrid Control Designer software to set the proper network address.
8.	Download the configuration.
9.	Set the Real-Time Clock.
10.	If all status indications are green, power may be restored to the I/O modules per the application's procedures.

Replacing the Scanner Module

Removing and replacing the Scanner Module from an I/O expansion rack (C50, C70, C70R CPU controllers only) requires that the source of AC power is removed from the rack. Removing power from the Expansion rack has the following consequences:

- All power to all I/O modules in the rack will be lost; hence all control outputs from the rack to the process are lost.
- Redundant controllers will operate with the affected I/O in failsafe state during Scanner2 module replacement
- Does not impact other I/O Racks in the same configuration

Table 37 - Scanner Module Replacement

Step	Action
1.	If a process is currently in operation, then:
	Either ensure that powering-down the expansion rack will not have adverse consequences on any running process, or
	bring the process to a safe and orderly shutdown.
2.	Using an external (user-supplied) switch, disconnect the power supply or supplies in the expansion rack from the site AC power source.
3.	Unplug the cable(s) from the scanner port(s).
4.	At the top and bottom of the Scanner Module, loosen the captured screws that secure the module in the rack, and remove the module from the rack.
5.	Configure the scanner address jumpers/DIP switches on the replacement module to match those of the removed module.
6.	Ensure that the new Scanner Module is properly aligned with the slot guides, insert the new Scanner Module in the rack, and secure it in place with the captured screws at top and bottom of the module.
7.	Re-install the cable(s).
8.	Using the external (user-supplied) switch, connect the power supply or supplies in the expansion rack to the site AC power source. The Scanner Module should resume communications with I/O modules in the rack and with the Controller Module with which it is connected.
9.	Check status indications at the Scanner Module, at the Controller Module, and at the OI.

Replacing an I/O Module

A CAUTION

Read and understand all of the following information regarding RIUP before attempting to remove and/or replace any I/O module, particularly in a system that is actively controlling a process.

All of the I/O Module types in the HC900 Controller System include the Removal and Insertion Under Power (RIUP) feature. That is, while the rack is powered, any of the I/O Modules can be removed or inserted:

- With no physical damage to the module, to the rack, or to other modules in the rack
- Without disturbing the functions of other I/O modules in the rack or in the system.

Under carefully controlled circumstances, this feature enables the user to remove and insert an I/O module without completely shutting down a running system. However, it must be recognized that removing or inserting an I/O module under power is potentially hazardous to property and to personnel.

Circumstances that dictate prudent actions depend on conditions and specific process applications at each user facility. It is the responsibility of site personnel to know all potential consequences of RIUP, and to take actions to prevent all adverse consequences before removing or inserting an I/O module under power. Table 38 provides some general guidelines for establishing appropriate procedures at a given installation.

Table 38 - RIUP: Potential Hazards and Recommended Actions

Hazard	Source	Preventive Action(s)
A CAUTION Loss of control or view of a running process can cause damage to equipment and/or to process product.	Each signal at each of the terminals for an I/O module has a specific function. Any or all of the signals may be vital for safely controlling a process.	Either: Using trained personnel and appropriate control mechanisms, transfer to manual control of each signal that is necessary to maintain safe process control. Or: Bring the process to a safe stop before initiating the removal or insertion procedure.
A WARNING Human contact with high voltage sources will result in death or serious injury.	Potentially lethal voltages on Terminal Blocks.	Disconnect all signals at terminal blocks from sources of power before removing the terminal block from the I/O module. Ensure that the Protective Earth (PE) ground is properly connected and properly functioning.

Table 39 - I/O Module Replacement

Step Action

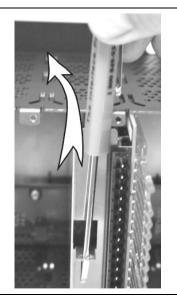
A CAUTION

Removal or Insertion Under Power of an I/O module is an option, but if operating circumstances permit, disconnecting power from the rack is the preferred option. Plan and develop an action sequence before beginning the replacement procedure. Primary considerations include:

When replacing I/O module, the voltages to the modules must be disconnected at the field device before removing the terminal block from the module.

Loss of control/monitoring in a running process - Each signal at each of the terminals for an I/O module has a specific function. Any or all of the signals may be vital for safely controlling a process. Determine the functions of all signals to the modules and know the potential consequences of losing each. If possible, transfer control to alternate mechanisms; otherwise, bring the process to a safe and controlled shutdown.

1. A WARNING


Disconnect all signals from power sources, using (user-supplied) switches at field devices. Use a meter to ensure that all voltages are disconnected.

If a power-down replacement procedure is opted, also disconnect power from the rack, using the (user-supplied) switch in the site AC power source.

- 2. Loosen the captive screws at top and bottom of the module; loosening the screws will cause the terminal block to be partly extracted from the module connector. Remove the terminal block from the module.
- 3. Using the extractor loop on the cover on the module, pull the module from the slot as shown in the illustration at right.

As shown in the illustration, a long flat-tip screwdriver is used as an extraction lever.

Insert the screwdriver tip into the extraction tab on the front of the module cover, and rotate the screwdriver handle toward the back, using the top edge of the rack as a fulcrum.

- 4. Verify that the replacement module is of the proper type. Then, carefully insert it into the slot in the rack so as to make proper contact with the connector in the backplane.
- 5. Replace the terminal block on the module.
- 6. If the rack was powered-down for the procedure, restore power to the rack.
- 7. Re-connect signals to field devices.

Battery Installation/Replacement

Advisory Regarding Battery Installation

Memory for the CPU in the Controller Module includes:

- · Volatile memory and
- Non-volatile memory (Flash)

Only volatile RAM requires battery backup.

When power is applied to the Controller Module, the CPU is initialized automatically. If the battery is installed after initialization, and if site power is maintained, the current draw from the battery is very low approximately 4 microamps. If site power is disconnected with the battery in place and with the CPU in the initialized state, the current draw on the battery is approximately 800 microamps. However, if the battery is installed before power is applied (and the CPU initializes), the SDRAM will draw approximately 40 milliamps.

At the 4 microamp level, the battery will retain energy over an extended period.

At the 800 microamp level, the battery will retain sufficient energy to maintain the content of SDRAM for 50 weekends (approximately 100 days) of backup service.

At the 40 milliamp level, battery life is severely reduced. The battery could be rendered useless in less than 60 hours.

CAUTION

Installing the backup battery when the CPU is not initialized will cause undue battery drain.

Do not install or replace the backup battery until after site power is applied.

Battery Installation Procedures

Table 40 – Installing Backup Battery (CPU not initialized)

Step	Action					
1.	A CAUTION					
	Improper application of site power can cause damage to equipment.					
	Ensure that the controller rack is ready and safe for application of AC power.					
2.	Apply site AC power to the Power Supply that is associated with the controller Module					
3.	Press the latch on the battery cover (1) to release the battery holder, and pull on the handle (2) to remove the battery holder. Note the orientation of the battery-holder assembly (battery toward the left).					
4.	The battery is retained in the holder by spring tension of the plastic holder itself. Insert the negative end of the battery into the back end of the holder, and press on the battery (see arrow) so that it snaps into the holder. To ensure that the battery is seated properly, rotate it in the holder, using finger or thumb pressure toward the positive (front) end of the battery.					
5.	While maintaining proper orientation (battery toward the left), slide the battery holder into the slot in the Controller Module until it snaps into place.					

Battery Replacement Procedures

Table 41 – Replacing a Backup Battery (CPU Powered))

Step	Action				
1.	A CAUTION If the battery is removed from the Controller Module when AC power is not applied, the content of SDRAM will be lost.				
	Before beginning this procedure, upload and SAVE a copy of the configuration, or ensure that a previously SAVEd copy of the current configuration is available.				
2.	Apply site AC power to the Power Supply that is associated with the controller Module				
3.	Press the latch on the battery cover (1) to release the battery holder, and pull on the handle (2) to remove the battery holder. Note the orientation of the battery-holder assembly (battery toward the left).				
4.	The battery is retained in the holder by spring tension of the plastic holder itself. Extract the battery from the holder by using your thumb to apply pressure to the front end of the battery, and rotating it to the left. Insert the negative end of the new battery into the back end of the holder, and press on the battery so that it snaps into the holder. To ensure that the battery is seated properly, rotate it in the holder, using finger or thumb pressure toward the positive (front) end of the battery.				
5.	While maintaining proper orientation (battery toward the left), slide the battery holder into the slot in the Controller Module until it snaps into place.				

Specifications

General Specifications

	C30	C50	C70	C70R	
Controller Design	Modular design with metal rack enclosure, power supply, controller CPU and user selectable I/O module types.				
Rack Mounting and Installation	Surface mounting with 4 screws in back of rack. Installation Category II, Pollution Degree 2, IEC 664, UL840 Installation coordination				
Controller I/O support	4, 8, or 12 I/O slots per Rack None (requires remote I/O racks)				
Remote I/O racks	1 w/o switch, using Ethernet direct cable. Up to 4 with recommended Ethernet switch(s). 1 w/o switch, Ethernet direct cable. Up to 5 with recommended.				
Remote I/O interface type	None	Separate Ethernet 100 dedicated communicat	Base-T port on CPU, Raions link	J-45 connection,	
Remote I/O Distance	None 328 ft. (100 m.) – controller to remote rack or controller to switch. to two switches per connection, 984 ft. (300 m.), maximum distanc 750m (2460 ft.) – Fiber optic cable, controller to remote rack or controller to switch. Up to two switches per connection, 1500m (4920 ft) maximum distance. (see page 182)			.), maximum distance. o remote rack or	
I/O Capacity Combined Analog and Digital	384	1920			
Analog Inputs	192	960			
Analog Outputs	40	200			
	48 with heat de- rating	240 with heat de-rating	1		
Rack Size 4 I/O slot chassis	5.4"(137mm) H" x 10. height to 6.9" (175.3n	5"(266.7mm) W x 6.0" [*] ([*]	151.7 mm) D (rear moui	nting plate extends	
8 I/O slot chassis	5.4"(137mm) H x 16.5 height to 6.9" (175.3n	5"(419.1mm) W x 6.0" [*] (1 nm)	51.7mm) D (rear mount	ing plate extends	
8 I/O slot chassis with redundant power support	5.4"(137mm) H x 20.9"(530.9.1mm) W x 6.0" * (151.7mm) D (rear mounting plate extends height to 6.9" (175.3mm)				
12 I/O slot chassis	5.4"(137mm) H x 22.5"(571.5mm) W x 6.0" * (151.7mm) D (rear mounting plate extends height to 6.9" (175.3mm)				
12 I/O slot chassis with redundant power support	5.4"(137mm) H x 26.9"(683.3mm) W x 6.0" * (151.7mm) D (rear mounting plate extends height to 6.9" (175.3mm)				
Redundant CPU rack	* 6.4 (162.6) for 32 DI/DO and 16 AI Modules 10.3"(261.6mi * 6.4 (162.6) for 32 DI/DO and 16 AI Modules extends heigh			5.4"(137mm) H x 10.3"(261.6mm) W x 6.0" * (151.7mm) D (rear mounting plate extends height to 6.9" (175.3mm)	

	C30	C50	C70	C70R	
I/O Wiring					
Type	Removable terminal blocks				
Terminal Block Styles	20 screw: Barrier or Euro-style, tin-plated or gold-plated (for DC connections)				
	36 screw: Euro style	gold plated (Req'd with c	ertain higher capacity me	odules)	
Gauge wires	20 screw:				
		26 AWG, solid or strande			
	-	AWG, solid or stranded			
	36-screw:				
	•	AWG, solid or stranded			
Shield terminals	Optional brackets mo	unted top/bottom of rack			
Power (P01)		004/40 474 0044			
Voltage	·	o 264VAC, 47 to 63 Hz			
In Rush Current		for 150 ms at 240VAC			
Input rating	130 VA				
Output rating	60W				
Fuse	Internal non-replacea	ble fuse. User installed e	external fuse.		
Power (P02)		00.014.0 (= :			
Voltage	•	o 264VAC, 47 to 63 Hz			
In Rush Current		for 120 ms at 240VAC			
Input rating	90 VA				
Output rating	28W				
Fuse	Internal non-replacea	ble fuse. User installed e	external fuse.		
Power (P24)	24 - 22 / 22				
Voltage	21 to 29VDC				
In Rush Current	30A for 3ms @29VD0	<u>; </u>			
Input rating	72.5W				
Output rating	60W				
Fuse		ble fuse. User installed e			
Normal Scan Time		input card has its own A/			
Fast Scan Time	53ms for up to~250 fast logic blocks 67ms for up to ~315 fast logic blocks 107ms for up to ~400 fast logic blocks 107ms for up to ~1040 fast logic blocks 107ms for up to ~1040 fast logic blocks 133ms for up to ~1300 fast logic blocks 133ms for up to ~1300 fast logic blocks 133ms for up to ~1300 fast logic blocks 133ms for up to ~1040 fast logic blocks 133ms for up to ~2500 fast logic blocks 133ms for up to ~1040 fast logic blocks 133ms for up to ~2500 fast logic blocks				
Detection+Failover time from Lead to Reserve CPU	N/a Up to 4 analog scan cycles				
Run-Mode Edit Transfer Time	3 normal scan times (1.5 sec. typical) for all configuration edits not including I/O Changes				
Operating Modes	Run (No configuration download in this position)				
	Run/Program (Download allowed)				
	Program (Outputs Off, initialization on download).				
	Offline mode is available via software selection (for Al calibration).				

Features					
	C30	C50	C70	C70R	
Maximum user- configurable Function Blocks	400	2000	5000	'	
Maximum Control Loops	Quantity based on				
System Blocks (Not user configurable)	Monitor blocks, Co	mmunications		s, System block, Rack	
Loop Outputs	dual output [heat/c	ool])		step (motor positioning),	
Control Loop Types	PID A, PID B, Dupl Humidity, On-Off, A		tio, Cascade, % Carb	on, Dewpoint, Relative	
Auto-tuning	Accutune III, fuzzy	logic overshoot sup	opression, applicable	to all control loops	
Setpoint Programmers	Time Units: H Segment Time: 0-			t range	
Programmer Events	Assignable to DO	or internal status			
Setpoint Profiles	50 segments per p	rofile. Number of st	ored profiles is user-c	configurable.	
Setpoint Scheduler	Ramp type: Ramp time Time units: Hours or minutes Segment time: 0.001 to 9999.999 hours or minutes Cycles: Per segment to 999 or infinite				
Auxiliary Scheduler Setpoints	Up to 8 setpoints, s	soak only			
Schedule events	Up to 16, assignab	le to DO or internal	status		
Setpoint Scheduler Schedules	50 segments per s	chedule. Number of	f stored schedules is	configurable.	
Sequencers	States: 50				
	State text: 12 characters				
	Steps: 64				
	Time Units: Minutes or Seconds				
	Digital Outputs: 16				
	Analog Output: 1, configurable value/step				
	Step Execution: On Time, Event 1, Event2, or via Advance Next Step: Any step				
Sequences		P Sequences is user-o	configurable		
Recipes (Variables)			is user-configurable		
Recipe Parameters			(may include profile	numbers)	
Signal Tags (Read only)	Up to 65,535	a.g.tai valiabioo	a, morado promo i		
Tag Identification	· · · · · · · · · · · · · · · · · · ·			units of measure (analog	
Variables (Read/Write)	Up to 2048	()			
Variable Identification	16-character tagname, 16-character descriptor,6-character units of measure (analog only), 6 character on/off state (digital only)				

Communications					
	C30	C50	C70	C70R	
Network Communications Ports					
Number of Ethernet 10/100Base-T connections	1	1	2	2	
Ethernet 10/100Base-T, RJ-45 connection	packages, OPC sen Initiator, and Hybrid configuration softwa	a acquisition software ver, Modbus/TCP Control Designer re	configuration softwa	rvisory and data packages, OPC P Initiator (non- orid Control Designer re	
Max. number of concurrent Ethernet host connections	Up to 5 (peer data e consume a host con			ween two ports (peer not consume a host	
RS-232 Ports					
Ports per controller	Two, user selectable protocol. 3-Plug cor	e between RS 232 and nnectors supplied.	RS-485 with Modbus I	RTU or Honeywell	
Baud rates	1200, 2400, 4800, 9 software or OI.	600, 19200, 38400, 57	600, configured by Hyb	orid Control Designer	
Modem	For remote connecti at controller, 9600 b	on to Hybrid Control Do	esigner software, requi	res external modem	
RS-485 Ports					
Ports per controller		e between RS-485 and col. Only one port for 1			
Cable type	2-wire plus shield, B	elden 9271 or equivale	ent		
1042, 559 Distance from controller	2000 ft. (600 m.)				
1042, 559 Power to OI	24VDC, user-provid	ed at OI			
Unit addresses	1 to 247				
RS-232, RS-485 Ports					
Parity (user selectable)	Odd, even, none				
Stop bits (user selectable)	1 or 2				
Speed (user selectable)		600, 19200, 38400, 57	600		
Double Register Format for Modbus RTU Slave and Master data (User selectable)	Selectable byte order				
RS-232, RS-485 Modbus,					
Slave Operation Number of ports per controller	Up to two				
Masters per port	One				
Principal Function Block Address Range	User selectable starting address range for registers assigned to each principal block type.				
RS-232, RS-485 Modbus Master Operation					
Number of ports per controller	One (RS232 or RS485)				

	000	050	070	0700	
- · · · · · · · · · · · · · · · · · · ·	C30	C50	C70	C70R	
Function Block Types	Slave – 4 read and 4	•			
	,	on block) up to 16 par			
	· ·	on) up to 8 parameters			
		ber of Read and Write imeters per controller.)	extension blocks per S	slave block up to the	
Slave devices per controller	Up to 32				
Number of read/write Modbus Parameters	Up to 1024 max. per	controller			
Double Register Format	Selectable per device	е			
Speed	1 second fastest – lo	ad dependent			
RS-232, RS-485 Modbus/TCP Initiator Operation					
Number of ports per controller	One (Models C30 and C50) Two (Models C70 and C70R) RS232 or RS485				
Function Block Types	Slave – 4 read and 4 write data points				
	Read (Slave extension block) up to 16 parameters				
	Write (Slave extension) up to 8 parameters				
	(No limit on the number of Read and Write extension blocks per Slave block up to the maximum 1024 parameters per controller.)				
Slave devices per controller	Up to 32				
Number of read/write Modbus Parameters	Up to 1024 max. per	controller			
Double Register Format	Selectable per device	е			
Speed	1 second fastest – lo	ad dependent			
Peer-to-peer					
10/100Base-T via Network port	Supports UDP protocol and Peer Data Exchange function blocks for peer data exchange				
No. of Peers/Controller	32				
Update rate	500 ms to 5 sec., selectable				
Peer Data	Digital and Analog Signal Tags, Variables - up to 2240 parameters				
Ethernet					
Ethernet Network Connection	10/100 Base-T, RJ-45				
Host Network Protocol	Modbus/TCP				

Maximum distances per Ethernet specifications					
Controller rack to I/O Rack	Ethernet CAT5 cable with RJ-45 connectors	100m /328 ft			
	Fiber Optic cable with switch	750m			
	Fiber Optic cable with switch and repeater	1500m (see page 182)			
Controller to Ethernet Switch	Ethernet CAT5 cable with RJ-45 connectors	100m /328 ft			
Ethernet Switch to I/O Rack	Ethernet CAT5 cable with RJ-45 connectors	100m /328 ft			
Controller to Network Switch	Ethernet CAT5 cable with RJ-45 connectors	100m /328 ft			
Network Switch to PC	Ethernet CAT5 cable with RJ-45 connectors	100m /328 ft			
Controller to 1042 Operator Interface	Shielded, Twisted pair	610m /2000 ft			

Environmental Conditi	Environmental Conditions						
Ambient Temperature	Reference	Rated	Extreme	Transportation & Storage			
F	77+/-5	32 to 140	32 to 140	-40 to 158			
С	25+/-3	0 to 60	0 to 60	-40 to 70			
Ambient Relative	*45 % to 55 % RH	*10% to 90 % RH	*5 % to 90 % RH	*5 % to 95 % RH			
Humidity	non-condensing	non-condensing	non- condensing	non-condensing			
Mechanical							
Acceleration	0 g	1 g	1 g	Not rated			
Duration	0 ms	30 ms	30 ms				
Vibration	0 Hz	0 Hz to 14 Hz—	0 Hz to 14 Hz—				
	0 g	amplitude 2.5 mm	amplitude 2.5 mm				
		(peak-to-peak)	(peak-to-peak)				
		14 Hz to 250 Hz—	14 Hz to 250 Hz—				
		acceleration 1 g	acceleration 1 g				
* Applies up to 40C							

Approvals					
CE Conformity	This product is in conformity with the protection requirements of the following European Council Directives: 73/23/EEC, the Low Voltage Directive, and 89/336/EEC, the EMC Directive. Conformity of this product with any other "CE Mark" Directive(s) shall not be assumed.				
EMC Conformity	EN61326: Electrical Equipment For Measurement, Control and Laboratory use. EMC requirements.				
EMC Classification	Group 1, Class A, ISM Equipment				
General Purpose Safety	Compliant with EN61010-1, UL3121-1, UL61010C-1, CSA C22.2 No. 1010-1				
Hazardous (Classified)	FM Class I, Div. 2, Groups A, B, C, D				
Location Safety	CSA Class I, Div. 2 Groups A, B, C, D				
	Class 1, Zone 2, IIC				
Installation Category (Overvoltage Category)	Category II: Energy-consuming equipment supplied from the fixed installation. Local level appliances, and Industrial Control Equipment. (EN 61010-1)				
Pollution Degree	Pollution Degree 2: Normally non-conductive pollution with occasional conductivity caused by condensation. (ref. IEC 664-1)				
Product Classification	Class I: Fixed, Permanently Connected, Industrial Process Control Equipment with protective earthing (grounding). (EN 61010-1)				
Power, per rack	Voltage: Universal power, 90 to 264 Vac, 47 to 63Hz				
Controller Rack	Rating: 130VA @ 264VAC, typical 110VA @ 115VAC				
	In-rush current: 7 amps peak-to-peak for 150 ms at 240 Vac				
	Variable; depends on I/O Module complement.				

Temperature Class ratings			
Racks:			
Redundant CPU Rack	T6		
Redundant PS Ext. Rack	T6		
8 Slot Redundant PS Ext. Rack	T6		
12 Slot Redundant PS Ext. Rack	T6		
4 I/O Slot Rack	T6		
8 I/O Slot Rack	T6		
12 I/O Slot Rack	T6		
Power:			
Power Supply (P01, P02, P24)	T4		
Power Status Module (PSM)	T6		
Controllers:			
C30/C50/C70/C70R CPU	T5		
Redundancy Switch Module (RSM)	T6		
I/O:			
Scanner (1 or 2 Port)	T6		
Analog Input (Universal 8 channel)	T6		
Analog Input (High Level 16 channel)	T6		
Analog Output (4 Channel)	T4		
Digital Input, Contact type (16 Channel)	T5		
Digital Input, 24 Vdc (16 channel)	T4		
Digital Input, 120/240 Vac (8 channel)	T3C@ Ta= 60 deg. C		
	T4 @ Ta = 40 deg. C		
Digital Input Vdc (32 channel)	T5		
Digital Output, Relay type (8 channel)	T5		
Digital Output, 24 Vdc, (16 channel)	T4		
Digital Output, 120/240 Vac (16 channel)	T4		
Digital Output Vdc (32 channel)	T6		
Pulse/Frequency/Quadrature (4 channel)	T5		

HC900 Analog Input Ranges vs. UMC800 Analog Input ranges

Users of UMC800 Controllers from Honeywell will find the analog range selections of the HC900 Controller differ slightly from those available in the UMC800. These differences are indicated in Table 42 in the column identified "(Reference): Corresponding UMC800 Input type and range". The number to the right of the range data indicates the range number reference for the UMC800 range table.

When using the Hybrid Control Designer configuration software to convert UMC800 configuration files to HC900 configuration files, the HC900 range to the left of the UMC800 data will be used by the conversion program. There may also be UMC800 ranges that are not supported by the HC900 Controller. For these ranges the conversion process will default the range data to a null, not-programmed, range.

Table 42 - HC900 PV Input Types and Ranges

Туре	Range Low	Range High	EU	(Reference): Corresponding UMC800 Input type and range
None				n/a
В	-18	1815	С	B 40 1820 C 58
В	0	3300	F	B 104 3308 F 59
E	-270	1000	С	n/a
E	-454	1832	F	n/a
E	-129	593	С	n/a
Е	-200	1100	F	n/a

Туре	Range Low	Range High	EU	(Reference): Corresponding UMC800 Input type and range
J	-18	871	С	J-200 870 C 4
J	0	1600	F	J-328 1598 F 5
J	-7	410	С	J 0 400 C 2
J	20	770	F	J 32 752 F 3
K	-18	1316	С	K 0 1200 C 16
K	0	2400	F	K 32 2192 F 17
K	-18	982	С	K 0 800 C 14
K	0	1800	F	K 32 1472 F 15
K	-29	538	С	K 0 400 C 12
K	20	1000	F	K 32 752 F 13
Ni-NiMo	0	1371	С	NiMo 0 1400 C 50
Ni-NiMo	32	2500	F	NiMo 32 2552 F 51
Ni-NiMo	0	682	С	n/a
Ni-NiMo	32	1260	F	n/a
NiMo-NiCo	0	1371	С	MoCo 0 1400 C 110
NiMo-NiCo	32	2500	F	MoCo 32 2552 F 111
NiMo-NiCo	0	682	С	n/a
NiMo-NiCo	32	1260	F	n/a
NiCroSil-NiSil	-18	1300	С	N 0 1200 C 24
NiCroSil-NiSil	0	2372	F	N 32 2192 F 25
NiCroSil-NiSil	-18	800	С	N 0 800 C 22
NiCroSil-NiSil	0	1472	F	N 32 1472 F 23
R	-18	1704	С	R -20 1760 C 28
R	0	3100	F	R -4 3200 F 29
S	-18	1704	С	S 0 1600 C 30
S	0	3100	F	S 32 2912 F 31
Т	-184	371	С	T -200 400 C 40
Т	-300	700	F	T –328 752 F 41
Т	-129	260	С	T -50 150 C 34
Т	-200	500	F	T -58 302 F 35
W_W26	-20	2320	С	W_W26 -20 2320 C 52
W_W26	-4	4200	F	W_W26 -4 4208 F 53
W5W26	-18	2316	С	W5W26 -20 2320 C 54
W5W26	0	4200	F	W5W26 -4 4208 F 55
W5W26	-18	1227	С	n/a
W5W26	0	2240	F	n/a
Platinel	0	1380	С	PLTNL 0 1380 C 118
Platinel	32	2516	F	PLTNL 32 2516 F 119
Platinel	0	750	С	PLTNL -70 750 C 116
Platinel	32	1382	F	PLTNL -94 1382 F 117
Pt100	-184	816	С	Pt100 –200 800 C 68
Pt100	-300	1500	F	Pt100 –328 1472 F 69
Pt100	-184	649	С	n/a

Туре	Range Low	Range High	EU	(Reference): Corresponding UMC800 Input type and range
Pt100	-300	1200	F	n/a
Pt100	-184	316	С	Pt100 -50 150 C 60
Pt100	-300	600	F	Pt100 -58 302 F 61
Pt500	-184	649	С	n/a
Pt500	-300	1200	F	n/a
Pt1000	-40	260	С	Pt1000 –50 400 C 120
Pt1000	-40	500	F	Pt1000 –50 752 F 121
JIS100	-200	500	С	JIS -200 500 C 78
JIS100	-328	932	F	JIS -328 932 F 79
JIS100	-200	260	С	JIS 0 100 C 72
JIS100	-328	500	F	JIS 32 212 F 73
Cu10	-20	250	С	Cu10 -20 250 C 84
Cu10	-4	482	F	Cu10 -4 482 F 85
YSI405	10	37.8		n/a
YSI405	50	100		n/a
Ohms	0	200		Ohms 0 200 86
Ohms	0	500		n/a
Ohms	0	1000		n/a
Ohms	0	2000		Ohms 0 2000 87
Ohms	0	4000		n/a
MA	4	20		mA 4 20 100
MA	0	20		mA 0 20 99
MV	0	10		mV 0 10 88
MV	0	50		mV 0 50 92
MV	0	100		mV 0 100 95
MV	-10	10		mV -10 10 89
MV	-50	50		mV -50 50 93
MV	-100	100		mV –100 100 96
MV	-500	500		mV –500 500 98
V	0	1		V 0 1 101
V	0	2		V 0 2 103
V	0	5		V 0 5 105
V	0	10		V 0 10 108
V	1	5		V 1 5 107
V	-1	1		V -1 1 102
V	-2	2		V -2 2 104
V	-5	5		V -5 5 106
V	-10	10		V -10 10 109
Carbon	0	1250	mV	n/a
Oxygen	-30	510	mV	n/a

System Sizing and Availability Summary

Table 43 – System Size and Availability Summary

Specification	C30	C50	C70	C70R
Combined Analog and Digital I/O	384 points	1920 points	1920 points	1920 points
Analog Inputs	142 points	960 points	960 points	960 points
Analog Outputs	40 points	200 points	200 points	200 points
Block inputs	C	uantity based or	n available memo	ory
Block parameters	C	uantity based or	n available memo	ory
Block values	375,000	375,000	375,000	375,000
FDB worksheets	20	20	40	40
Function blocks	400	2000	5000	5000
Local I/O	Yes	Yes	Yes	No
Loop blocks	C	Quantity based or	n available memo	ory
Modbus registers used by slave blocks	1024	1024	1024	1024
Modbus slave blocks	32	32	32	32
Numeric constants	C	luantity based or	n available memo	ory
Page connectors	200	1000	2500	2500
Peer blocks	32	32	32	32
Peer data exchange items	2240	2240	2240	2240
Position proportional output blocks	ional output blocks Quantity based on available memory			ory
Profiles in Pool	User Configurable			
Ramp blocks	C	Quantity based on available memory		
Recipes in Pool		User Configurable		
Redundancy capability	No	No	No	Yes
Redundant host comms.	No	No	Yes	Yes
Schedules in Pool		User Co	nfigurable	
Segments per profile	50	50	50	50
Sequencer blocks	C	uantity based or	n available memo	ory
Sequences in Pool		User Co	nfigurable	
Setpoint programmer blocks	C	uantity based or	n available memo	ory
Setpoint scheduler blocks	Quantity based on available memory		ory	
Signal tags	C	Quantity based on available memory		
Soft Wire bytes	C	Quantity based on available memory		
Stage blocks	Quantity based on available memory			
Steps per schedule	50	50	50	50
Steps per sequence	64	64	64	64
Support of dual port scanner	No	No	No	Yes
Tag descriptor	Quantity based on available memory			
Text bytes	Quantity based on available memory			
Variables	2000	2000	2000	2000
Variables in a Recipe	50	50	50	50

Fiber Optics Recommendations

Honeywell recommends that you use the following equipment for extended distances:

Table 44 - Fiber Optics Equipment Recommendations

Ethernet Switch	Moxa Unmanaged Ethernet Switch model EDS-308-MM-SC with (6) 10/100 Ethernet ports, (2) multi-mode fiber ports with SC Connectors (require 24VDC power)
Converter	Moxa Media Converter model IMC-101-M-SC with (1) 10/100BaseT(X) to 100BaseFX multi-mode fiber port with SC connectors (require 24VDC power)
Fiber Cable	Multi-mode, Duplex, 62.5/125 with SC connectors on both ends
Copper Ethernet Cable	Shielded Cat5 Ethernet
FO Connector	SC Type

Figure 84 and Figure 85 are examples of Extended Distance configurations

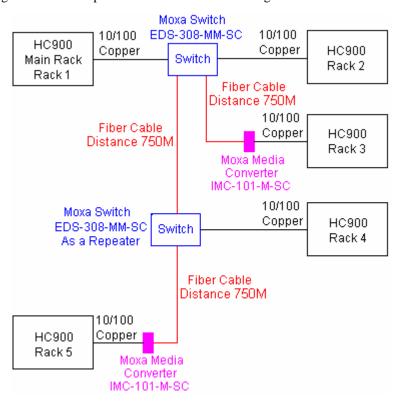


Figure 84 - Extended Distance Example #1

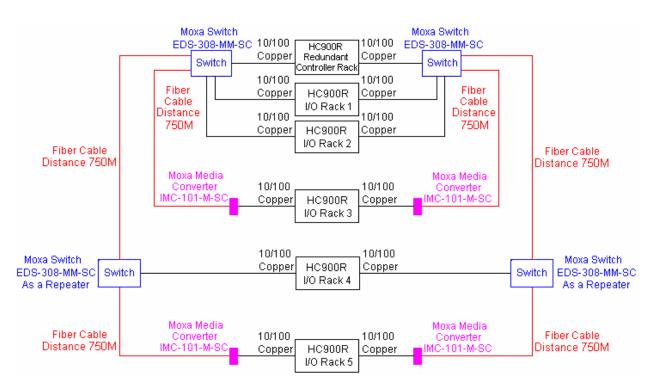


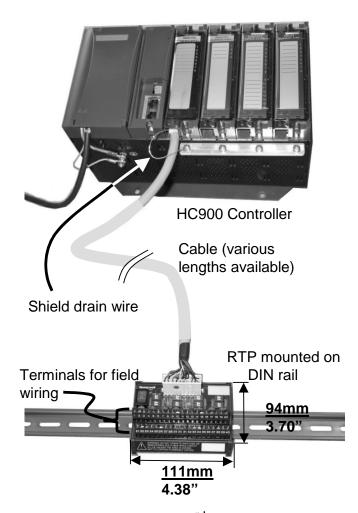
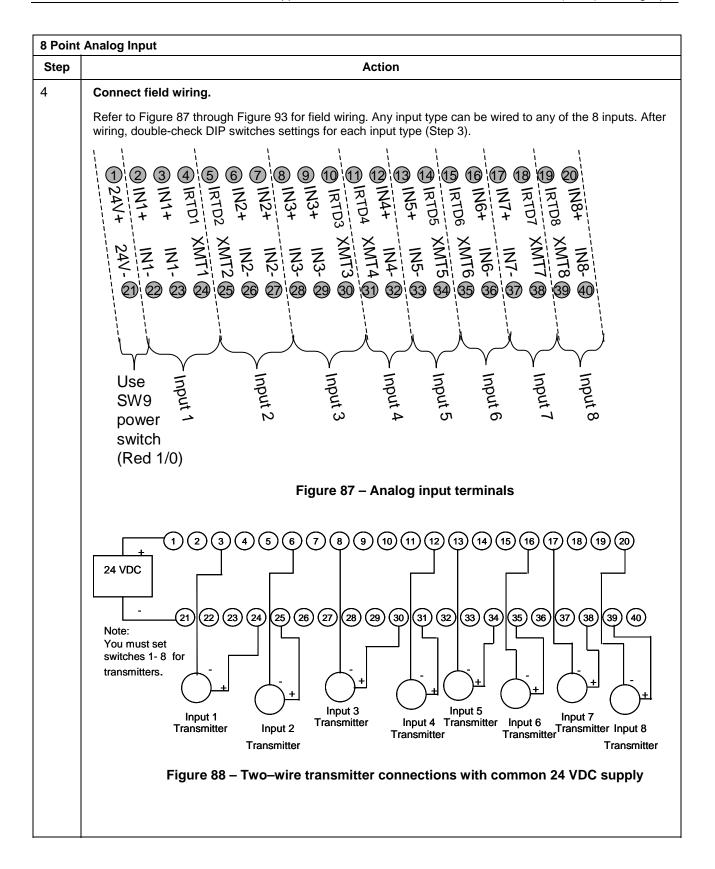
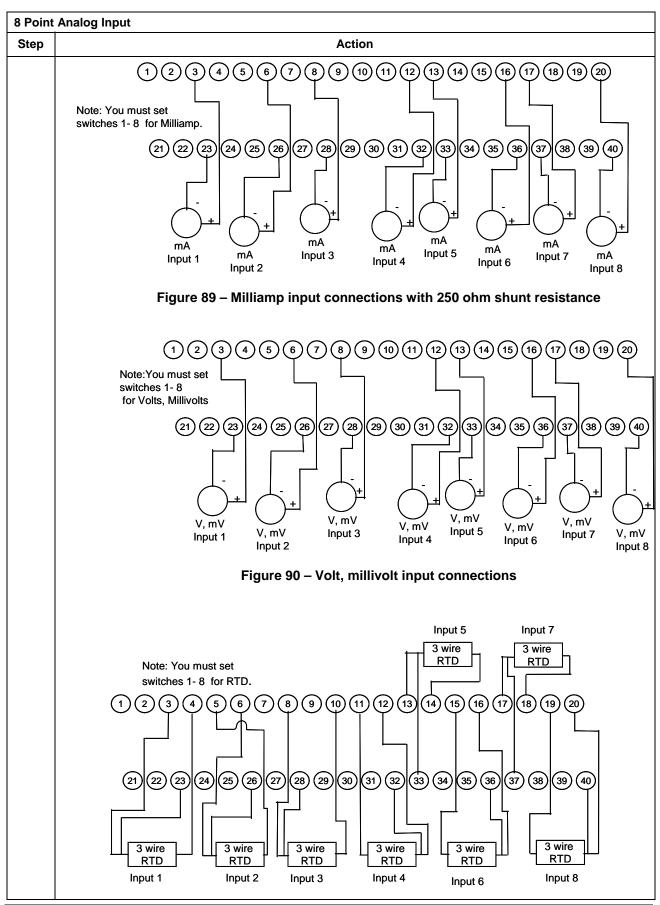
Figure 85 – Extended Distance Example #2

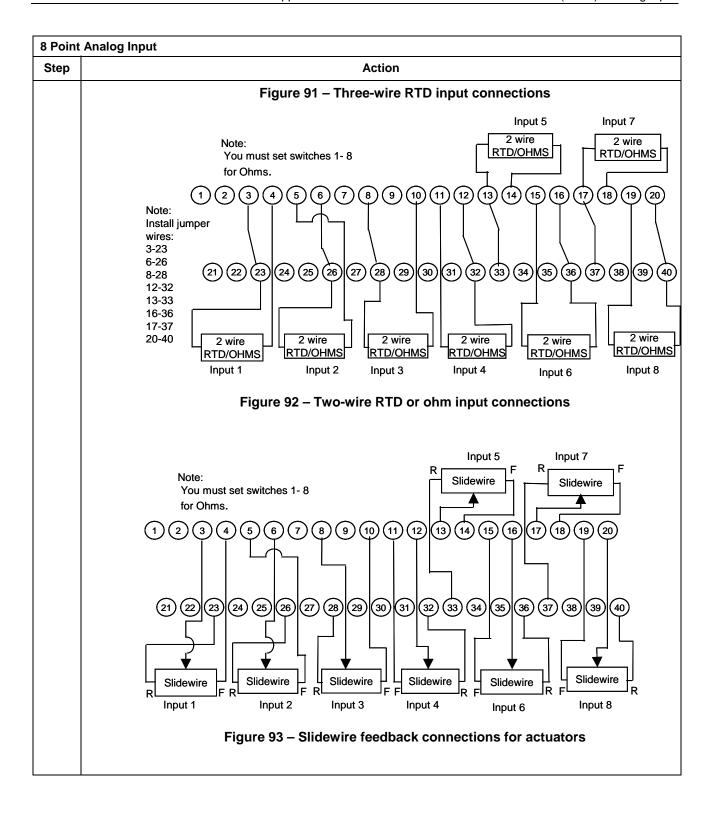
Appendix - Installation of Remote Termination Panels (RTPs)

Overview

The Remote Termination Panel (RTP) provides an easy way to connect the HC900 controller to the field wiring. The RTP integrates some of the typical externally connected components, reducing wiring and setup time. It also minimizes the need for multiple wires under a single screw connection by expanding the connectivity of the shared terminals of the I/O modules.

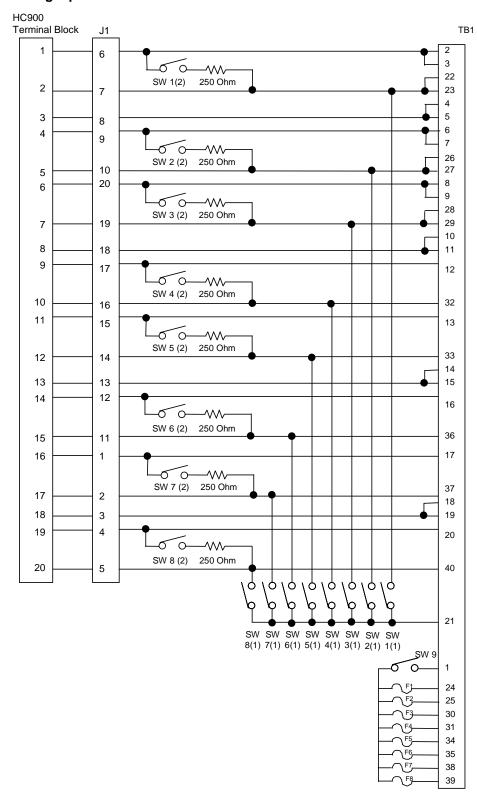
T	There are three RTP types:	
•	8 point Analog Input	186
•	Relay Output	192
	16 point Analog Input/Digital Input/Digital Output/Analog Output	196

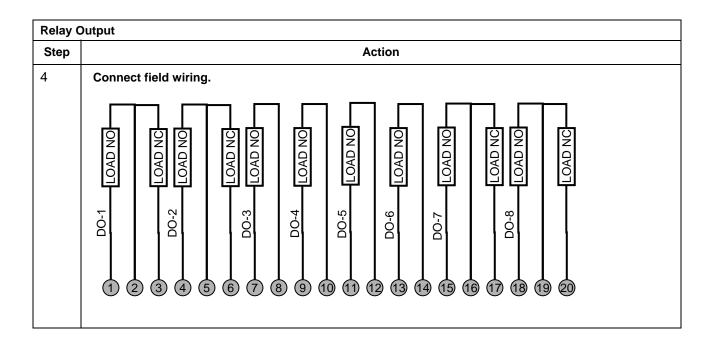

Figure 86 – Example installation (not shown: 2nd RTP & cable for high capacity Al/DI/DO)

Analog Input

8 Point	Analog Input				
Step	Action				
1	ATTENTION: RTP is not for use with thermocouples.				
	ATTENTION: RTP and cables are intended for permanent installation within their own enclosure.				
	Mount RTP cable assembly to HC900 Controller (Figure 86).				
	Remove appropriate key tabs from terminal block to allow mating with the module. See page 70.				
	Connect desired cable to AI module at controller. Choose from:				
	900RTC-L010 Remote Terminal Low Voltage Cable Assembly, 1.0 meters long				
	900RTC-L025 Remote Terminal Low Voltage Cable Assembly, 2.5 meters long.				
	900RTC-L050 Remote Terminal Low Voltage Cable Assembly, 5.0 meters long				
	Install AI module label onto the module connector cover.				
	 Connect shield drain wire to the grounding bars at the base of the HC900 rack. All field-wiring shields must be grounded as described in the shield grounding section (page 66). 				
2	Mount RTP to DIN rail.				
	Latch to rail. See page 217.				
	Connect cable to RTP.				
3	Set DIP switch positions SW1 through SW8.				
	Set each input's DIP switch positions according to the input type. For Input n use Switch n. For example, for Input 1 use Switch 1, for Input 2 use Switch 2, etc. If an input is not used, set its DIP switch positions to OFF.				
	SW9 1 1 2 SW1 1 2 SW2 1 2 SW2 1 3 SW4 1 2 SW6 1 2 SW8 Fuses: 80mA Time lag Wickmann part #3740080041 UL/CSA approved TB1 TB1				
	Volt, millivolt: Ohms: Transmitter: Milliamp: RTD:				
	SW9 is the red power switch for 24 volt supply. Module RIUP is not affected by using the RTP. See page 191 for RTP internal schematic.				

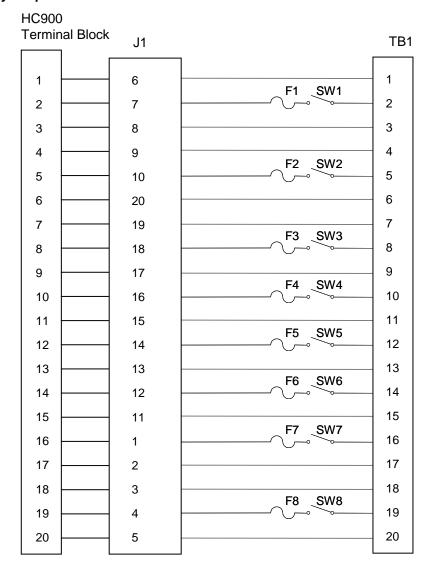


Analog Input accuracy specification


Range	Al Module Accuracy	RTP + Cable Accuracy	Al Module + RTP Accuracy
100Ω Plat. RTD	±0.1% of Range	±0.04% Range (0.357°C)	±0.14% of Range
JIS RTD	±0.1% of Range	±0.12% Range (0.824°C)	±0.22% of Range
10Ω Cu. RTD	±0.1% of Range	±0.57% Range (1.540°C)	±0.67% of Range
200Ω OHMS	±0.1% of Range	±0.07% Range (0.140Ω)	±0.17% of Range
0-10mV LINEAR	±0.1% of Range	±0.04% Range (0.004mV)	±0.14% of Range

Analog Input RTP Internal schematic

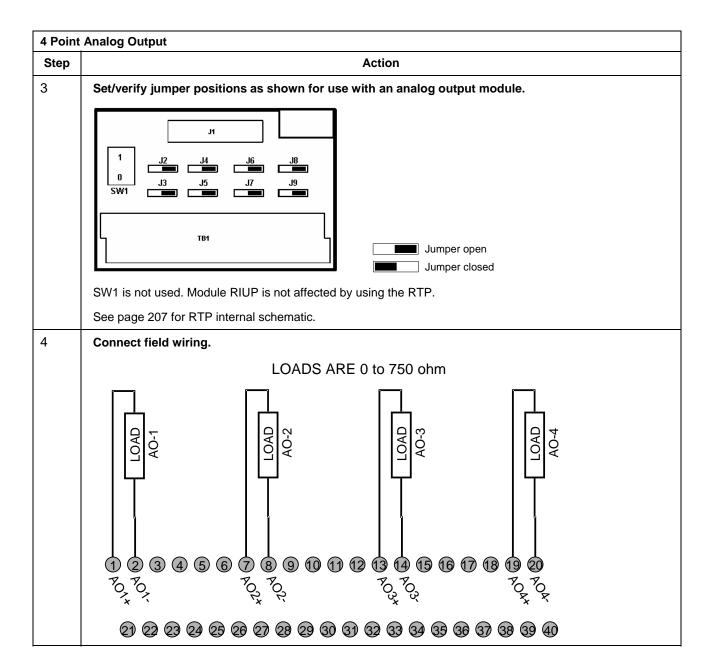
Relay Output


Action ATTENTION: RTP and cables are intended for permanent installation within their own enclosure.					
ATTENTION: RTP and cables are intended for permanent installation within their own enclosure.					
Mount RTP cable assembly to HC900 Controller (Figure 84).					
Remove appropriate key tabs from terminal block to allow mating with the module. See page 70.					
Connect desired cable to relay output module at controller. Choose from:					
900RTC-H010 Remote Terminal High Voltage Cable assembly, 1.0 meters long					
900RTC-H025 Remote Terminal High Voltage Cable assembly, 2.5 meters long					
900RTC-H050 Remote Terminal High Voltage Cable assembly, 5.0 meters long					
ATTENTION: Cable power is limited to 24 Amps per module at 60C (140 degrees F) and 32 Amps at 54C (129 degrees F).					
Install relay output module label onto the module connector cover.					
 Connect shield drain wire to the grounding bars at the base of the HC900 rack. All field-wiring shields must be grounded as described in the shield grounding section (page 66). 					
Mount RTP to DIN rail.					
Latch to rail. See page 217.					
Connect cable to RTP.					
Set switch positions SW1 through SW8.					
Fuses: 6.3A Time Lag Wickmann part #3741630041 UL/CSA approved for 250V Module Removal / Insertion Under Power (RIUP) is supported by turning off all eight switches to allow removal of the module from the rack without causing an arc. Please see page 68 for more details.					

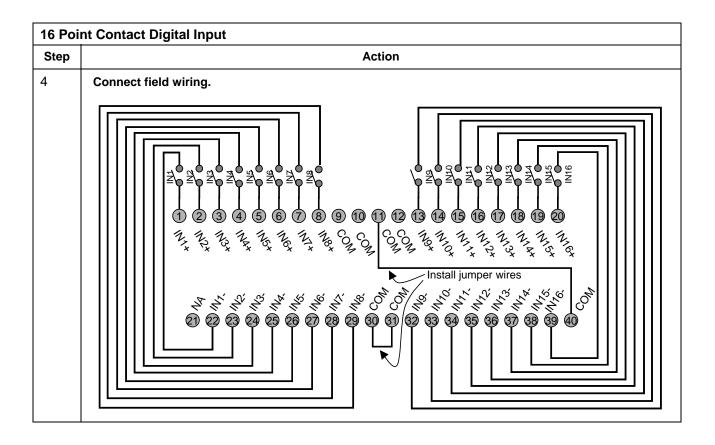
ATTENTION

- Cable power is limited to 24 Amps per module at 60C (140 degrees F) and 32 Amps at 54C (129 degrees F).
- As shown in the schematic, each switch is SPST and opens and closes one lead of the relay wiring. If your application requires opening and closing both sides of the load wiring, then an external DPST switch is required.

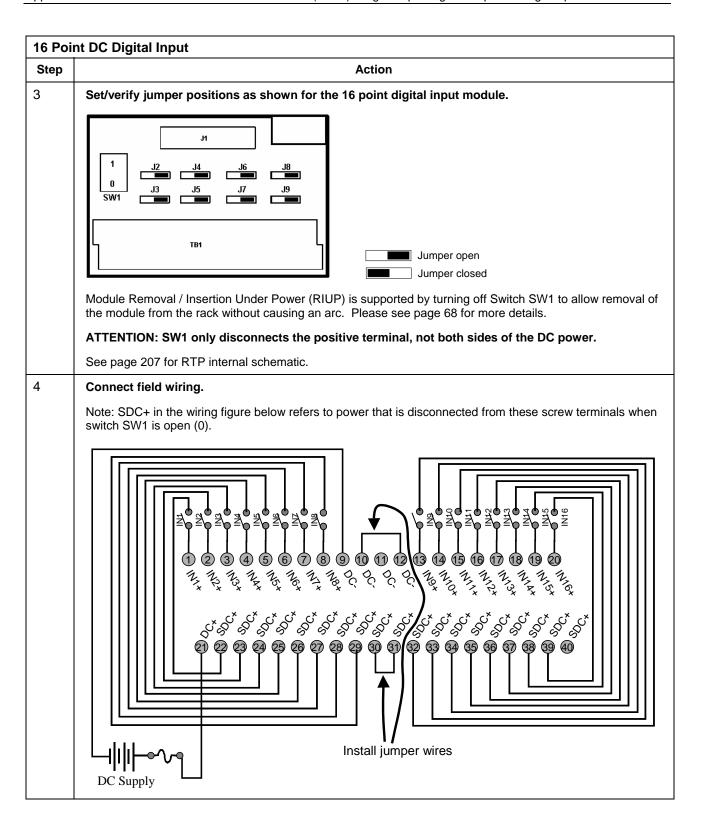
Relay Output RTP Internal schematic

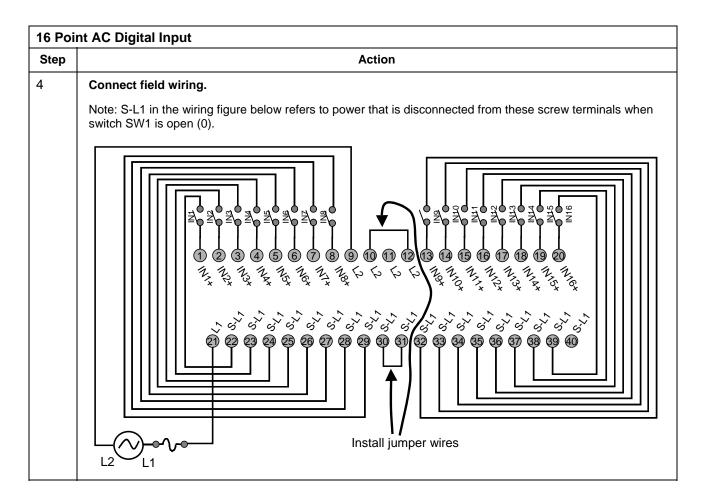

RTP Cable wire positions and colors (applies to 8 point Al and Relay Output)

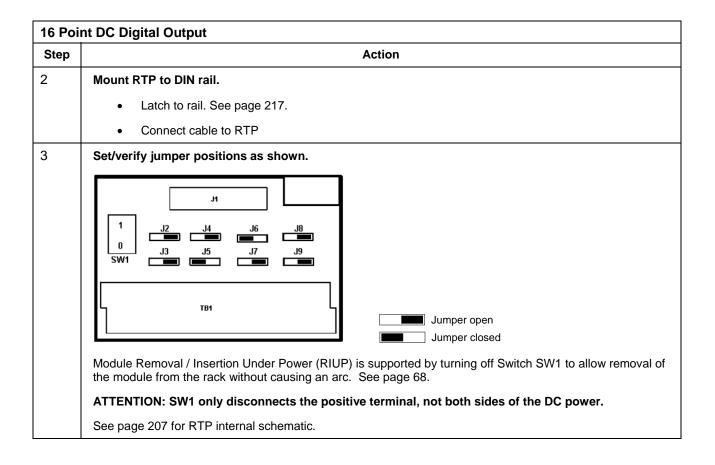
Twisted Pair Number	HC900 Module TB Position	RTP J1 Plug Connector	Color
1	1	6	Black
	2	7	Red
2	4	9	Black
	5	10	White
3	6	20	Black
	7	19	Green
4	9	17	Black
	10	16	Blue
5	11	15	Black
	12	14	Yellow
6	14	12	Black
	15	11	Brown
7	16	1	Black
	17	2	Orange
8	19	4	Red
	20	5	White
9	3	8	Red
	8	18	Green
10	13	13	Red
	18	3	Blue

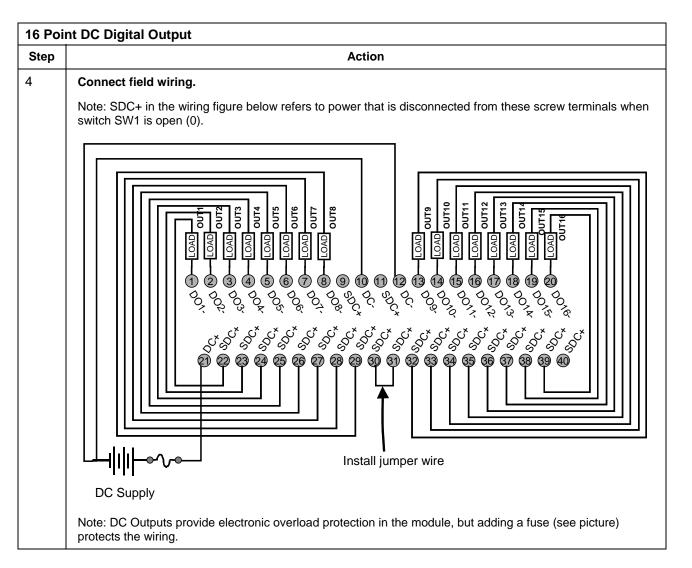

Digital Input/Digital Output/Analog Output

A single DI/DO/AO-RTP and cable is used with the following modules:	See page
4-point Analog Output	196
 16-point Contact Digital Input 	198
16-point DC Digital Input	199
16-point AC Digital Input	201
16-point DC Digital Output	202
8-point AC Digital Output	204
Dual DI/DO/AO-RTPs and cables are used with the following modules:	See page
• 16-point Analog Input	208
• 32-Point DC Digital Output	210
• 32-Point DC Digital Input	212

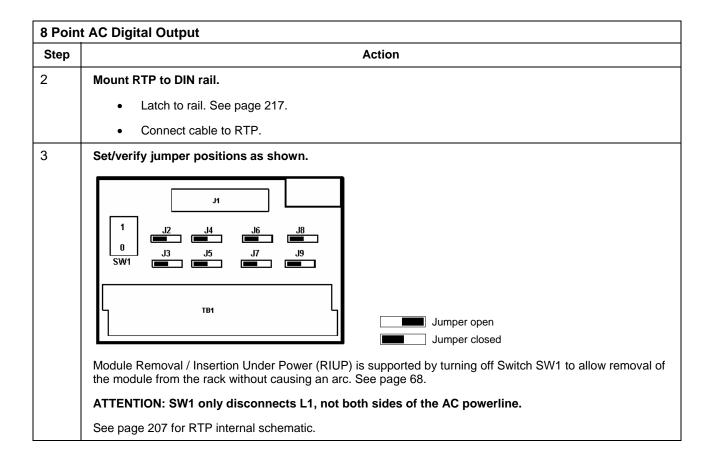

4 Point	nt Analog Output					
Step	Action					
1	ATTENTION: RTP and cables are intended for permanent installation within their own enclosure.					
	Mount RTP cable assembly to HC900 Controller (Figure 86).					
	Remove appropriate key tabs from terminal block to allow mating with the module. See page 70.					
	 Connect desired cable to AO module at controller. Choose from: 900RTC-L010 Remote Terminal Low Voltage Cable Assembly, 1.0 meters long 900RTC-L025 Remote Terminal Low Voltage Cable Assembly, 2.5 meters long 900RTC-L050 Remote Terminal Low Voltage Cable Assembly, 5.0 meters long Install AO module label onto the module connector cover. Connect shield drain wire to the grounding bars at the base of the HC900 rack. All field-wiring shields must be grounded as described in the shield grounding section (page 66). 					
2	Mount RTP to DIN rail.					
	Latch to rail. See page 217.					
	Connect cable to RTP					

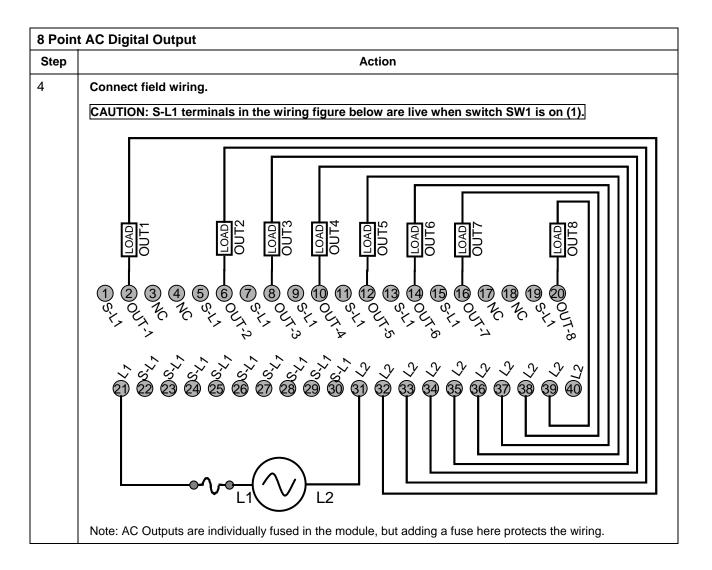

16 Poi	Point Contact Digital Input				
Step	Action				
1	ATTENTION: RTP and cables are intended for permanent installation within their own enclosure.				
	Mount RTP cable assembly to HC900 Controller (Figure 86).				
	Remove appropriate key tabs from terminal board to allow mating with the module. See page 70.				
	Connect desired cable to 16 point Contact DI module at controller. Choose from:				
	900RTC-L010 Remote Terminal Low Voltage Cable Assembly, 1.0 meters long				
	900RTC-L025 Remote Terminal Low Voltage Cable Assembly, 2.5 meters long				
	900RTC-L050 Remote Terminal Low Voltage Cable Assembly, 5.0 meters long				
	Install 16 point contact DI module label into the module connector cover.				
	 Connect shield drain wire to the grounding bars at the base of the HC900 rack. All field-wiring shields must be grounded as described in the shield grounding section (page 66). 				
2	Mount RTP to DIN rail.				
	Latch to rail. See page 217.				
	Connect cable to RTP				
3	Set jumper positions as shown for the 16 point contact digital input module.				
	Jumper open Jumper closed SW1 is not used. Module RIUP is not affected by using the RTP.				
	See page 207 for RTP internal schematic.				


16 Poi	16 Point DC Digital Input			
Step	Action			
1	ATTENTION: RTP and cables are intended for permanent installation within their own enclosure.			
	ATTENTION: The RTP combines the two groups of 8 inputs into one group of 16.			
	Mount RTP cable assembly to HC900 Controller (Figure 86).			
	Remove appropriate key tabs from terminal board to allow mating with the module. See page 70.			
	 Connect desired cable to 16 point DC DI module at controller. Choose from: 900RTC-L010 Remote Terminal Low Voltage Cable Assembly, 1.0 meters long 900RTC-L025 Remote Terminal Low Voltage Cable Assembly, 2.5 meters long 900RTC-L050 Remote Terminal Low Voltage Cable Assembly, 5.0 meters long Install 16 point DC DI module label into the module connector cover. 			
	 Connect shield drain wire to the grounding bars at the base of the HC900 rack. All field-wiring shields must be grounded as described in the shield grounding section (page 66). 			
2	Mount RTP to DIN rail.			
	Latch to rail. See page 217.			
	Connect cable to RTP.			

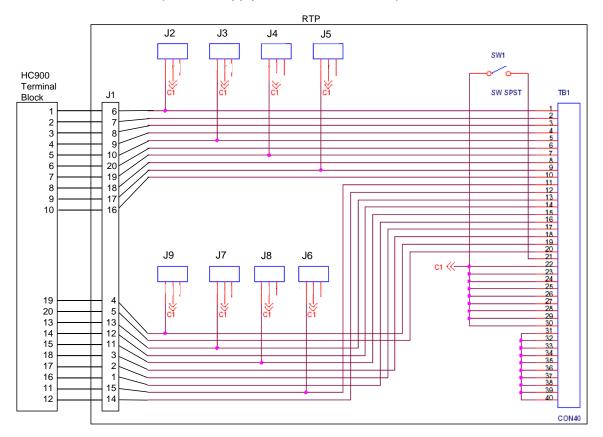


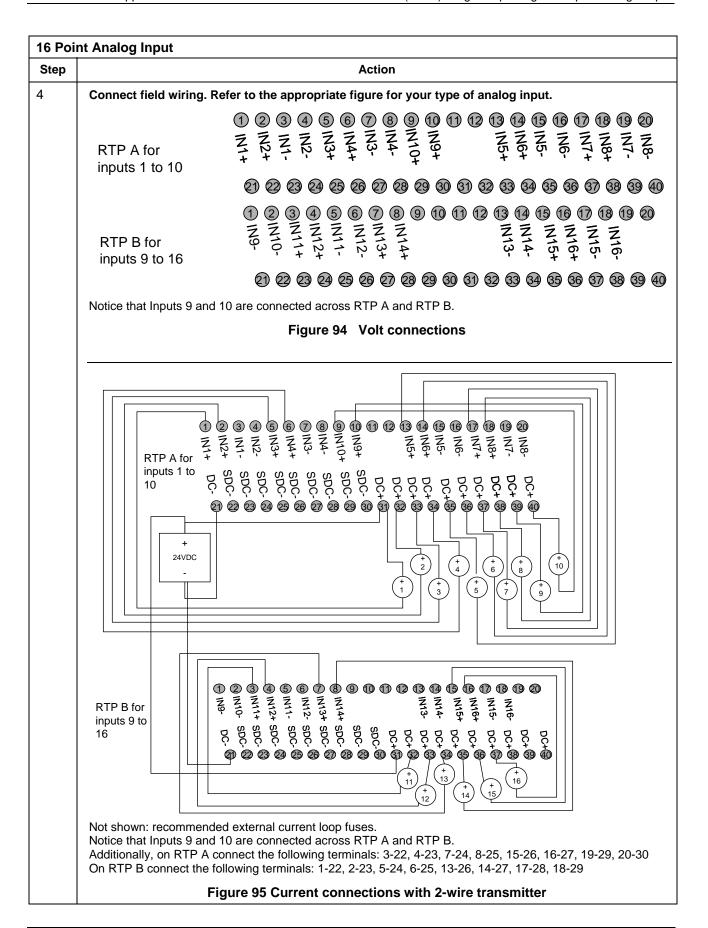
16 Poi	nt AC Digital Input
Step	Action
1	ATTENTION: RTP and cables are intended for permanent installation within their own enclosure.
	ATTENTION: The RTP combines the two groups of 8 inputs into one group of 16.
	Mount RTP cable assembly to HC900 Controller (Figure 86).
	Remove appropriate key tabs from terminal board to allow mating with the module. See page 70.
	 Connect desired cable to 16 point AC DI module at controller. Choose from: 900RTC-H010 Remote Terminal High Voltage Cable assembly, 1.0 meters long 900RTC-H025 Remote Terminal High Voltage Cable assembly, 2.5 meters long 900RTC-H050 Remote Terminal High Voltage Cable assembly, 5.0 meters long
	Install 16 point AC DI module label into module connector cover.
	 Connect shield drain wire to the grounding bars at the base of the HC900 rack. All field-wiring shields must be grounded as described in the shield grounding section (page 66).
2	Mount RTP to DIN rail.
	Latch to rail. See page 217.
	Connect cable to RTP
3	Set/verify jumper positions as shown.
	Module Removal / Insertion Under Power (RIUP) is supported by turning off Switch SW1 to allow removal of the module from the rack without causing an arc. See page 68.
	ATTENTION: SW1 only disconnects L1, not both sides of the AC powerline.
	See page 207 for RTP internal schematic.



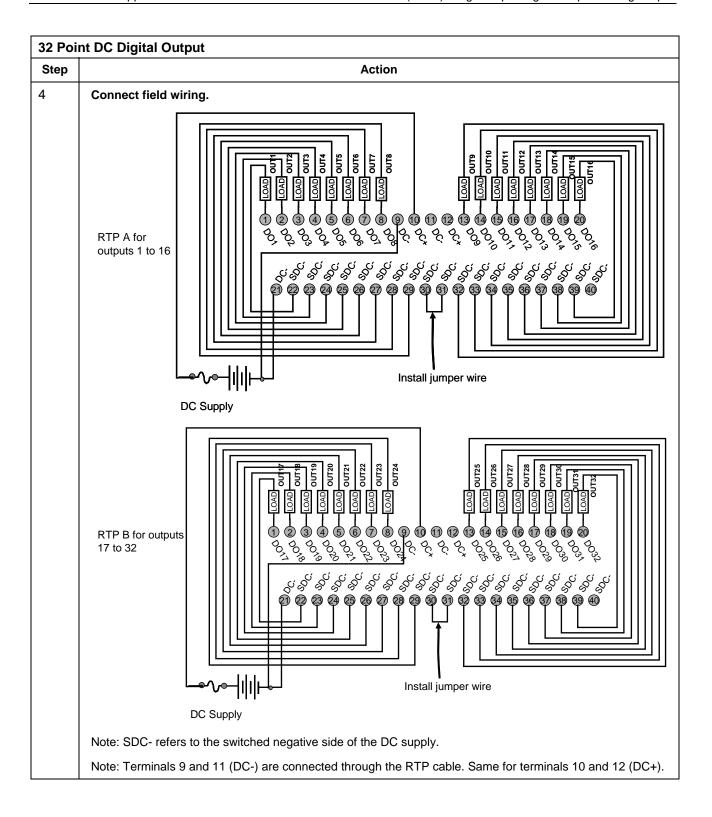

16 Poi	16 Point DC Digital Output		
Step	Action		
1	ATTENTION: RTP and cables are intended for permanent installation within their own enclosure.		
	ATTENTION: 16 point DC Digital Output is rated at 8A per module and 1A per output. Limited to 4A per group of 8.		
	ATTENTION: The RTP combines the two groups of 8 outputs into one group of 16.		
	Mount RTP cable assembly to HC900 Controller (Figure 86).		
	 Remove appropriate key tabs from terminal board to allow mating with the module. See page 70. 		
	 Connect desired cable to 16 point DC DO module at controller. Choose from: 900RTC-L010 Remote Terminal Low Voltage Cable Assembly, 1.0 meters long 900RTC-L025 Remote Terminal Low Voltage Cable Assembly, 2.5 meters long 900RTC-L050 Remote Terminal Low Voltage Cable Assembly, 5.0 meters long 		
	 Install 16 point DC DO label into the module connector cover. 		
	 Connect shield drain wire to the grounding bars at the base of the HC900 rack. All field-wiring shields must be grounded as described in the shield grounding section (page 66). 		

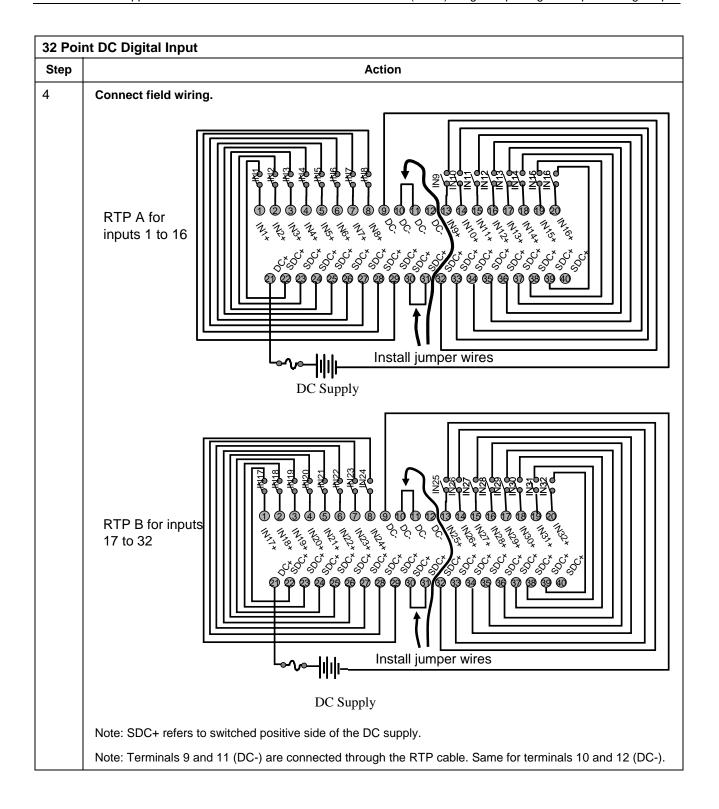
8 Poin	t AC Digital Output
Step	Action
1	ATTENTION: RTP and cables are intended for permanent installation within their own enclosure.
	ATTENTION: 8 point AC Output is limited to maximum of 2A per output for any VAC, 6A per RTP for 240VAC, 8A per RTP for 120VAC.
	ATTENTION: The RTP combines the 8 isolated outputs into one group of 8.
	Mount RTP cable assembly to HC900 Controller (Figure 86).
	Remove appropriate key tabs from terminal board to allow mating with the module. See page 70.
	Connect desired cable to 8 point AC DO module at controller. Choose from: 900RTC-H010 Remote Terminal High Voltage Cable assembly, 1.0 meters long
	900RTC-H025 Remote Terminal High Voltage Cable assembly, 2.5 meters long 900RTC-H050 Remote Terminal High Voltage Cable assembly, 5.0 meters long
	Install 8 point AC DO label into the module connector cover.
	 Connect shield drain wire to the grounding bars at the base of the HC900 rack. All field-wiring shields must be grounded as described in the shield grounding section (page 66).



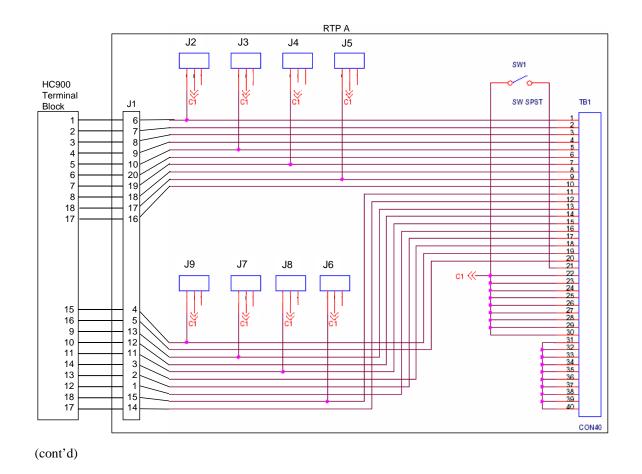

RTP Cable wire positions and colors (does not apply to 16 AI, 32 DI, 32 DO)

Twisted Pair Number	HC900 Module TB Position	RTP J1 Plug Connector	Color
1	1	6	Black
	2	7	Red
2	4	9	Black
	5	10	White
3	6	20	Black
	7	19	Green
4	9	17	Black
	10	16	Blue
5	11	15	Black
	12	14	Yellow
6	14	12	Black
	15	11	Brown
7	16	1	Black
	17	2	Orange
8	19	4	Red
	20	5	White
9	3	8	Red
	8	18	Green
10	13	13	Red
	18	3	Blue

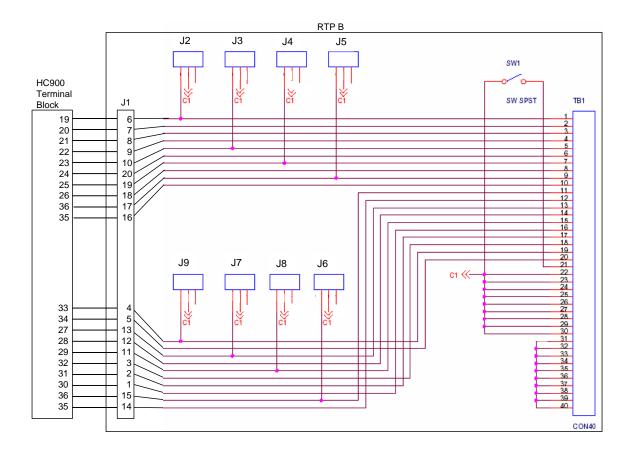

RTP Internal schematic (does not apply to 16 AI, 32 DI, 32 DO)


16 Poi	16 Point Analog Input				
Step	Action				
1	ATTENTION: RTP and cables are intended for permanent installation within their own enclosure.				
	ATTENTION: The RTP labeled "DI, DO, AO RTP ASSY" with jumpers J2-J9 is the correct one for 16 point AI.				
	Mount RTP cable assembly to HC900 Controller (Figure 86).				
	Remove appropriate key tabs from terminal board to allow mating with the module. See page 70.				
	 Connect terminal block end of desired cable assembly to 16 point Analog Input module at controller. Choose from: 				
	900RTC-3210 Remote Terminal Cable assembly, 1.0 meters long				
	900RTC-3225 Remote Terminal Cable assembly, 2.5 meters long				
	Install 16 point Analog Input label into the module connector cover.				
	 Connect both shield drain wires to the grounding bars at the base of the HC900 rack. All field-wiring shields must be grounded as described in the shield grounding section (page 66). 				
2	Mount RTPs to DIN rail.				
	Latch to rail. See page 217.				
	 Connect cables to RTPs. Cables are marked "RTP A" and "RTP B." In step 4, RTP A will be wired to Inputs 1-10, RTP B to Inputs 9-16. You can write on the RTPs' labels to distinguish them. 				
	Note: Inputs 9 and 10 are wired between both RTPs.				
3	Set/verify jumper positions on each RTP as shown. Jumper open Jumper closed Module Removal / Insertion Under Power (RIUP) is supported by turning off Switch SW1 to allow removal of the module from the rack without causing an arc. See page 68. ATTENTION: SW1 opens current loop on the ground side so that RIUP of module is possible, but voltage is still present on the positive side at RTP and module terminals. See page 214 for RTP internal schematic.				

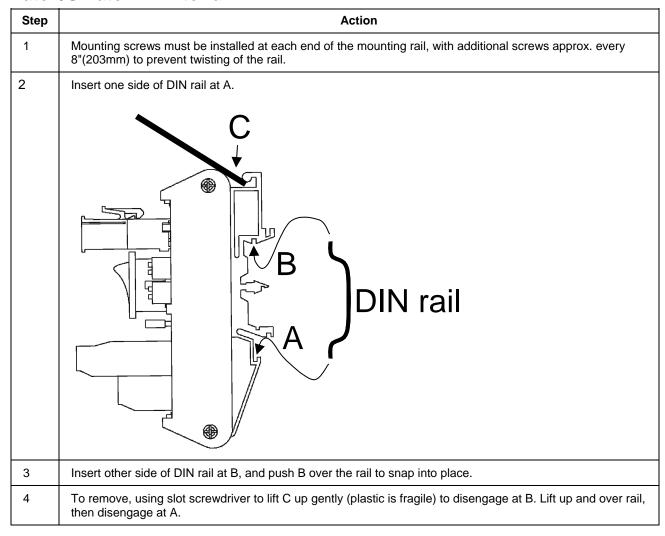
32 Poi	nt DC Digital Output			
Step	Action			
1	ATTENTION: RTP and cables are intended for permanent installation within their own enclosure.			
	ATTENTION: 32 point DC Digital Output is limited to 6A per RTP and 0.5A per output.			
	Mount RTP cable assembly to HC900 Controller (Figure 86).			
	Remove appropriate key tabs from terminal board to allow mating with the module. See page 70.			
	 Connect terminal block end of desired cable assembly to 32 point Digital Output module at controller. Choose from: 			
	900RTC-3210 Remote Terminal Cable assembly, 1.0 meters long			
	900RTC-3225 Remote Terminal Cable assembly, 2.5 meters long			
	Install 32 point DC DO label into the module connector cover.			
	 Connect both shield drain wires to the grounding bars at the base of the HC900 rack. All field-wiring shields must be grounded as described in the shield grounding section (page 66). 			
2	Mount RTPs to DIN rail.			
	Latch to rail. See page 217.			
	 Connect cables to RTPs. Cables are marked "RTP A" and "RTP B." In step 4, RTP A will be wired to outputs 1-16, RTP B to outputs 17-32. You can write on the RTPs' labels to distinguish them. 			
3	Set/verify jumper positions on each RTP as shown.			
	1 J2 J4 J6 J8 SW1 J3 J5 J7 J9 Jumper open Jumper closed			
	Module Removal / Insertion Under Power (RIUP) is supported by turning off Switch SW1 to allow removal of the module from the rack without causing an arc. See page 68.			
	ATTENTION: SW1 opens current loop on the ground side so that RIUP of module is possible, but voltage is still present on the positive side at RTP and module terminals.			
	See page 214 for RTP internal schematic.			



32 Poi	nt DC Digital Input			
Step	Action			
1	ATTENTION: RTP and cables are intended for permanent installation within their own enclosure.			
	Mount RTP cable assembly to HC900 Controller (Figure 86).			
	Remove appropriate key tabs from terminal board to allow mating with the module. See page 70.			
	 Connect terminal block end of desired cable assembly to 32 point Digital Input module at controller. Choose from: 			
	900RTC-3210 Remote Terminal Cable assembly, 1.0 meters long			
	900RTC-3225 Remote Terminal Cable assembly, 2.5 meters long			
	 Install 32 point DC DI label into the module connector cover. 			
	 Connect both shield drain wires to the grounding bars at the base of the HC900 rack. All field-wiring shields must be grounded as described in the shield grounding section (page 66). 			
2	Mount RTPs to DIN rail.			
	Latch to rail. See page 217.			
	 Connect cables to RTPs. Cables are marked "RTP A" and "RTP B." In step 4, RTP A will be wired to Inputs 1-16, RTP B to Inputs 17-32. You can write on the RTPs' labels to distinguish them. 			
3	Set/verify jumper positions on each RTP as shown.			
	1 J2 J4 J6 J8 J8 SW1 J3 J5 J7 J9 Jumper open Jumper closed			
	Module Removal / Insertion Under Power (RIUP) is supported by turning off Switch SW1 to allow removal of the module from the rack without causing an arc. See page 68.			
	See page 214 for RTP internal schematic.			


RTP A Cable wire positions and colors (for cable assembly drawing, applies to 16 AI, 32 DI, 32 DO)

Twisted Pair Number of Cable A	HC900 Module TB Position	RTP A J1 Plug Connector	Color
1	1	6	Black
	2	7	Red
2	4	9	Black
	5	10	White
3	6	20	Black
	7	19	Green
4	18	17	Black
	17	16	Blue
5	18	15	Black
	17	14	Yellow
6	10	12	Black
	11	11	Brown
7	12	1	Black
	13	2	Orange
8	15	4	Red
	16	5	White
9	3	8	Red
	8	18	Green
10	9	13	Red
	14	3	Blue



RTP B Cable wire positions and colors (for cable assembly drawing, applies to 16 Al, 32 Dl, 32 DO)

Twisted Pair Number of Cable B	HC900 Module TB Position	RTP B J1 Plug Connector	Color
1	19	6	Black
	20	7	Red
2	22	9	Black
	23	10	White
3	24	20	Black
	25	19	Green
4	36	17	Black
	35	16	Blue
5	36	15	Black
	35	14	Yellow
6	28	12	Black
	29	11	Brown
7	30	1	Black
	31	2	Orange
8	33	4	Red
	34	5	White
9	21	8	Red
	26	18	Green
10	27	13	Red
	32	3	Blue

Latch/Unlatch RTP to rail

Index

	enclosure, 55
—A—	equipment enclosures, 51
AC Input Module Wiring, 96	Ethernet Devices, 24, 113
AC Input terminal block, 18	Ethernet Open Connectivity Network, 24, 26
AC Output Module Wiring, 102	
Alarm Groups, 30	Euro style, 22, 76
Alarm/Event messages, 30	Event Groups, 30
	—F—
Analog Calibration, 178	-
Analog Input Calibration, 179	Field (Signal) Wiring, 77
Analog Output Calibration, 181	Filler Block, 87
Analog Output Module Wiring, 93	Flash, 145
ASCII, 28	Form-A relays, 105
D.	Form-C relays, 105
—B—	Fuses, 103
backplane, 68, 75	Fusing, 105
barrier style, 76	-
Barrier style, 22	—G—
Battery Installation, 69, 71, 189	ground voltage potential, 78
Battery Installation/Replacement, 69, 71	grounding bar, 78
Battery Replacement, 191	grounding bars, 66
	Grounding lug, 18
_C _	Grounding rug, 10
C30/C50 controller rack assembly, 67	—H—
C70R controller rack assembly, 70	HC900 Hybrid Controller, 6
Cabinet Wiring, 55, 56	Heat Rise De-rating, 52
Cable length, 53	HMI, 28
	Hub, 25
cable segment, 25	*
Cable Type, 115	Hybrid Control Designer, 23
Cables	—
how to make shielded CAT5E, 54	I/O channel numbers, 76
captured screws, 75	
CE Conformity, 58	I/O Expansion Network (C50 CPU only), 25
Cold Start, 145	I/O Expansion Network (C70R), 26
COM 1, 23	I/O expansion port, 21, 22
Communications Installation, 113	I/O Expansion Rack, 16
Contact Input Module Wiring, 99	I/O expansion rack assembly, 72
Controller Modes, 148	I/O implementation, 25
Controller Module, 20	I/O Installation Procedures, 81
Controller Module Diagnostics, 164	I/O Module Diagnostics, 175
Controller Name, 27	I/O Module Installation, 1, 58, 64, 75
Controller Rack, 15	I/O numbering assignments, 25
	I/O rack address, 73
custom graphics, 29	I/O slot, 75
—D—	I/O Wiring, 88
DC Input Module Wiring, 94	I/O wiring shields, 78
DC Output Module Wiring, 100	Input/Output Modules, 22
Diagnostics and Troubleshooting, 161	Installation Tools, 62
Distance planning, 53	Intellution, 29
Download/Upload, 153	IP address, 27
DSL, 30	E1, 122
F	E2, 122
—E —	I _{RTD} , 89
E-Mail, 26	isolation capacitor, 78
E-Mail Communications, 30	IT networking professional, 24
Emergency Stop switches, 59	6 r

J	Power transitions, 145
jumper, 81	Power UP, 145
Jumper Comb, 94, 96, 100, 103, 105	PROGRAM Mode, 148
Jumper Combs, 79	PV Input Types and Ranges, 198, 201, 203
jumpers, 26	• • • •
	—R—
—K—	rack address for I/O, 73
Kepware, 29	Rack Dimensions, 49
key-tabs, 82	rack installation, 62
	rack mounting, 65
_L _	Rack Options, 17
Label, 81	RAM, 145
labels, 76	Redundancy Switch Module (RSM), 8, 15, 21
LAN, 27	Redundant
LED Indications on Ethernet Hub, 177	2 systems w/PC supervision, 140
LED Indications on I/O Module, 174	C70R controller module, 20
LED Indications on Main CPU, 163	components, 13
LED Indications on Scanner Module, 170	controller rack, 15
LED Indicators, 162, 170	Controller Rack components, 15
lithium battery, 20	default gateway, 30
Local Area Network, 27	determine component compatibility, 4
—M—	Ethernet connections, 137
Master Control Relay, 59	example of single process, 8
Modbus mapping structure, 28	failover, 158
MODE switch, 150	features, hardware, 9
Mode Transitions, 150	I.O network, 26
Model number, 2	I/O wiring, 54
compatibility, 4	modes of operation, 155
Model selection guide, 2	network, 26
Modem, 129, 130, 131, 132	network connections, 138
Module Placement, 75	networks, 137
Module Wiring, 88	operating characteristics, 1, 145, 155
mounting racks, 65	peer-to-peer, 27
	Power Status Module, 19
—N—	power supplies, wiring of, 57
Null Modem Cable, 127	power supply, installation, 72
_0 _	rack dimensions, 50
OFFLINE Mode, 148	serial port configuration, 35
OHMs Inputs, 89	start-up, 155
OPC, 29	steady state operations, 156
OPC server/client software, 29	Relay Output Module Wiring, 105, 107
Open Modbus/TCP protocol, 29	Removal and Insertion Under Power, 80
Operating Characteristics, 145	Removal and Replacement Procedures, 182
Operating Modes, 145	Replacing an I/O Module, 187
operator interface	Replacing the Controller Module, 185
connect to controller, 124	Replacing the Power Supply, 183
connect to controller, 12 i	Replacing the Scanner Module, 186
—P—	Reserve Power Supply, 16, 17
Parallel processing, 9	RIUP, 80, 182, 187
PC hosts, 27	Router, 27, 29, 30
PC Hosts, 27	RS-232, 126, 127 PS-232 Modem 23
PC Modem Cable, 128	RS-232 Modem, 23 RS-232 Port, 20
PDE, 27	RS-485 Port, 20
Peer Data Exchange, 27	RTD Input Wiring, 90
Peer-to-peer communication, 27	RTD Input Willing, 90 RTD Inputs, 88
Personal Computer, 23	RTU, 28
PlantScape Vista Software, 29	RUN Mode, 148
Power DOWN, 145	KON WORE, 170
Power Down / Power Up, 145	_ \$_
Power Status Module, 16, 17	SCADA, 29
Power Supply, 18, 67, 68, 70	

Scanner 2 Module, 16, 17, 22 Scanner Diagnostics, 171 Scanner Module (C50), 21 scanner rack assembly, 72 Serial ports, 31 RS485, RS232, 31 S1, S2, 31 service provider, 30 shielded twisted pair, 58 Signal Grounding, 77 Simple Mail Transport Protocol, 30 Site and Equipment Preparation, 63 **SMTP**, 30 sockets, 27 Specifications, 192 SpecView32, 29 Status, 145 Subnet Mask, 27 System Monitor Function Blocks, 61

<u>—</u>т—

tagnames, 81 TCP/IP, 28 telephone links, 23 terminal block, 75 Terminal Block Colors, 76 Terminal Block Styles, 76 test-points, 68 The Fix, 29 transmission delays, 53

—U—

UDP, 27 Universal Analog Input Wiring, 89, 93 User Datagram Protocol, 27

V

Vertical Spacing of Racks, 50 Voltage test points, 18

W

WAN, 27 Warm Start, 145 Wire Gage, 77 wire shield, 87 wire size, 77 wire-tie, 86 Wiring Rules, 77

Sales and Service

For application assistance, current specifications, pricing, or name of the nearest Authorized Distributor, contact one of the offices below.

ARGENTINA

Honeywell S.A.I.C. Belgrano 1156 **Buenos Aires** Argentina

Tel.: 54 1 383 9290

ASIA PACIFIC Honeywell Asia Pacific Inc. Room 3213-3225 Sun Kung Kai Centre N° 30 Harbour Road Wanchai Hong Kong

Tel.: 852 829 82 98

AUSTRALIA

Honeywell Limited 5 Thomas Holt Drive North Ryde Sydney Nsw Australia 2113 Tel.: 61 2 353 7000

Honeywell Austria GMBH Handelskai 388 A1020 Vienna Austria Tel.: 43 1 727 800

Honeywell S.A. 3 Avenue De Bourget B-1140 Brussels Belgium

Tel.: 32 2 728 27 11

BRAZIL

HONEYWELL DO Brazil And Cia Rua Jose Alves Da Chunha Lima 172 05360.050 Sao Paulo . Brazil Tel.: 55 11 819 3755

BULGARIA

HONEYWELL EOOD 14, Iskarsko Chausse **POB 79** BG-1592 Sofia **BULGARIA** Tel: 359-791512/ 794027/792198

CANADA

Honeywell Limited The Honeywell Centre 300 Yorkland Blvd Toronto, Ontario M2j 1s1 Canada

Tel.: 800 461 0013 Fax:: 416 502 5001

CZECH REPUBLIC HONEYWELL, Spol.S.R.O. Budeiovicka 1 140 21 Prague 4 Czech Republic Tel.: 42 2 6112 3434

DENMARK

HONEYWELL A/S Automatikvej 1 DK 2860 Soeborg DENMARK

Tel.: 45 39 55 56 58

FINLAND

HONEYWELL OY Ruukintie 8 FIN-02320 ESPOO 32 **FINLAND** Tel.: 358 0 3480101

HONEYWELL S.A. Bâtiment « le Mercury » Parc Technologique de St Aubin Route de l'Orme (CD 128) 91190 SAINT-AUBIN **FRANCE** Tel. from France: 01 60 19 80 00 From other countries: 33 1 60 19 80 00

GERMANY

HONEYWELL AG Kaiserleistrasse 39 D-63067 OFFENBACH **GFRMANY** Tel.: 49 69 80 64444

HUNGARY HONEYWELL Kft

Gogol u 13 H-1133 BUDAPEST HUNGARY Tel.: 36 1 451 43 00

ICELAND

HONEYWELL Hataekni hf Armuli 26 PO Box 8336 128 reykjavik Iceland Tel: 354 588 5000

HONEYWELL S.p.A. Via P. Gobetti, 2/b 20063 Cernusco Sul Naviglio ITALY Tel.: 39 02 92146 1

MEXICO

HONEYWELL S.A. DE CV AV. CONSTITUYENTES COL. LOMAS ALTAS 11950 MEXICO CITY MEXICO Tel: 52 5 259 1966

THE NETHERLANDS HONEYWELL BV

Laaderhoogtweg 18 1101 EA AMSTERDAM THE NETHERLANDS Tel: 31 20 56 56 911

NORWAY

HONEYWELL A/S Askerveien 61 PO Box 263 N-1371 ASKER NORWAY Tel.: 47 66 76 20 00

POLAND

HONEYWELL Sp.z.o.o UI Domaniewksa 41 02-672 WARSAW POLAND Tel.: 48 22 606 09 00

PORTUGAL

HONEYWELL PORTUGAL LDA Edificio Suecia II Av. do Forte nr 3 - Piso 3 2795 CARNAXIDE PORTUGAL Tel.: 351 1 424 50 00

REPUBLIC OF IRELAND HONEYWELL

Unit 1 Robinhood Business Park Robinhood Road **DUBLIN 22** Republic of Ireland Tel.: 353 1 4565944

REPUBLIC OF **SINGAPORE**

HONEYWELL PTE LTD BLOCK 750E CHAI CHEE ROAD 06-01 CHAI CHEE IND.PARK 1646 SINGAPORE REP. OF SINGAPORE Tel.: 65 2490 100

REPUBLIC OF SOUTH **AFRICA**

HONEYWELL Southern Africa PO BOX 138 Milnerton 7435 REPUBLIC OF SOUTH **AFRICA** Tel.: 27 11 805 12 01

ROMANIA

Bucharest 147 Aurel Vlaicu Str., Sc.Z.. Apt 61/62 R-72921 Bucharest **ROMANIA** Tel: 40-1 211 00 76/ 211 79

HONEYWELL Office

RUSSIA

HONEYWELL INC 4 th Floor Administrative Builiding of AO "Luzhniki" Management 24 Luzhniki 119048 Moscow **RUSSIA** Tel: 7 095 796 98 00/01

SLOVAKIA

HONEYWELL Ltd Mlynske nivy 73 PO Box 75 820 07 BRATISLAVA 27 SLOVAKIA Tel.: 421 7 52 47 400/425

SPAIN

HONEYWELL S.A Factory Josefa Valcarcel, 24 28027 MADRID **SPAIN** Tel.: 34 91 31 3 61 00

SWEDEN

HONEYWELL A.B. S-127 86 Skarholmen **STOCKHOLM** SWEDEN Tel.: 46 8 775 55 00

SWITZERLAND HONEYWELL A.G. Hertistrasse 2 8304 WALLISELLEN SWITZERLAND Tel.: 41 1 831 02 71

TURKEY

HONEYWELL A.S. Caryiryolu Sok No. 7 Ucgen Plaza, Kat 5-6-7 Icerenkoy 81120 Instanbul Turkey Tel (90-216) 575 66 00

UNITED KINGDOM

HONEYWELL Honeywell House Arlington Business Park Bracknell, Berkshire **RG12 1FB** Tel: +44 (0) 1344 656000

U.S.A.

HONEYWELL INC. INDUSTRIAL PROCESS CONTROLS 1100 VIRGINIA DRIVE PA 19034-3260 FT. WASHINGTON U.S.A. Tel.: 1-800-343-0228

VENEZUELA

HONEYWELL CA APARTADO 61314 1060 CARACAS **VENEZUELA**

Tel.: 58 2 239 0211

51452403, Revision B

DECLARATION OF CONFORMITY

We declare that the following product,

HC900 Racks

Models:

900R04

900RR0

900R08

900R08R

900R012

900R12R

is in conformity with the protection requirements of Council Directives: 89/336/EEC as amended by 92/31/EEC and 93/68/EEC on the harmonization of the laws of the Member States relating to Electromagnetic Compatibility, and 73/23/EEC as amended by 93/68/EEC on the harmonization of the laws of the Member States relating to the safety of equipment designed for use within certain voltage limits.

The models covered by this Declaration are listed in, and evidence of conformity is provided by, Technical Files: 51452404 and 51452405

The following standards are referenced in the file:

EN 55011-1991

Limits and Methods of measurement of electromagnetic disturbances of ISM radio frequency

equipment

EN 61326 -1998

Electrical equipment for measurement, control and laboratory use - EMC requirements. EN 61010-1-1993 Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use.

Part 1: General Requirements

Manufacturer:

Honeywell International, Inc.

525 East Market Street York, PA 17405 USA

Honeywell International, Inc. 1100 Virginia Drive Fort Washington, PA 19034

Manager

Enabling Technology Services

Industrial Measurement & Control Engineering

Issue Date: 18 April

20 05

51452401, Revision C

DECLARATION OF CONFORMITY

We declare that the following product,

HC900 Modules

Models: 900A01 900B01 900C31 900C32

900C51 900C52 900C53 900G01 900G02 900G03 900H01 900H02 900H03 900P01 900P02 900RTA

900RTR 900RTS

900RSM 900PSM 900C71R 900C72R 900C73R

is in conformity with the protection requirements of Council Directives: 89/336/EEC as amended by 92/31/EEC and 93/68/EEC on the harmonization of the laws of the Member States relating to Electromagnetic Compatibility, and 73/23/EEC as amended by 93/68/EEC on the harmonization of the laws of the Member States relating to the safety of equipment designed for use within certain voltage limits.

The models covered by this Declaration are listed in, and evidence of conformity is provided by, Technical Files: 51452404 and 51452405

The following standards are referenced in the file:

EN 55011-1991 Limits and Methods of measurement of electromagnetic disturbances of ISM radio frequency

equipment

EN 61326 –1998 Electrical equipment for measurement, control and laboratory use - EMC requirements.

EN 61010-1-1993 Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use.

Part 1: General Requirements

Manufacturer: Honeywell International, Inc.

525 East Market Street York, PA 17405 USA

Honeywell International, Inc

1100 Virginia Drive Fort Washington, PA 19034 Joseph R. Gallen Manager

Enabling Technology Services

Industrial Measurement & Control Engineering

Issue Date: 18 April 20 05

Honeywell

Industrial Measurement and Control

Honeywell 1100 Virginia Drive Fort Washington, PA 19034